
Implementing NIST password guidelines
on PostgreSQL and Oracle

at CERN
How-To, Challenges and Opportunities

Maurizio De Giorgi – Miroslav Potocky

26.03.2025

Maurizio De Giorgi

• Senior Database Engineer at CERN since Sep 2020

• DB on Demand: Service Manager and DevOps

• Long career in many different roles, industry, markets with a strong focus on

databases and data stores

• Always looking at new technology, paradigms and trends

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN

Maurizio De Giorgi

maurizio.degiorgi@cern.ch

216 April, 2025

https://www.linkedin.com/in/maurizio-de-giorgi-0410751
mailto:maurizio.degiorgi@cern.ch

Established in 1954

23 Member states

Our mission:

• Unveil how the universe
works and what it is made
of

• Provide a unique range of
particle accelerator facilities
to enable research at the
forefront of the human
knowledge

• Unite people from all over
the world to push the
frontiers of science and
technology

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 316 April, 2025

The Large Hadron Collider

World’s largest particle accelerator
27 km (16.8 miles) ring of superconducting magnets

Magnets are cooled to -271.3°C (-456.34°F)
a temperature colder than outer space

Particles circle the accelerator 11.245 times/s
reaching 99.9999991% the speed of light

Lead ion collisions create temperatures of 100 000x hotter than
the heart of the sun

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 416 April, 2025

The Worldwide LHC Computing Grid (WLCG)

Tier0:
Data reconstruction + Tape archival

+ data distribution to other tiers
~ 200 PB of data per year

1 PB of data per second
Only 1% is kept (events with specific

characteristics)

WLCG:
- 170 collaborating centers

- 36 countries
- Data analysis

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 516 April, 2025

Oracle at CERN

• Since 1982

• 105 Oracle databases

• More than 11.800 Oracle accounts

• RAC, Active Data Guard, OEM, RMAN…

• Complex environment

• Used by

• Administrative Information Services

• Engineering teams

• Accelerator and experiments

• Full DBA support

• ≈ 5PB of data

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 616 April, 2025

• Oracle V2 (1979): First SQL-based RDBMS.

• Oracle V3 (1983): Client-server architecture, PL/SQL introduced.

• Oracle V4 (1984): Read consistency.

• Oracle V5 (1985): Distributed queries.

• Oracle V6 (1988): Row-level locking, PL/SQL stored procedures.

• Oracle7 (1992): Declarative referential integrity.

• Oracle8 (1997): Object-relational database.

• Oracle8i (1999): Native internet protocols, Java support.

• Oracle9i (2001): Real Application Clusters (RAC).

• Oracle10g (2003): Grid computing.

• Oracle11g (2007): Advanced compression, Automated SQL tuning.

• Oracle12c (2013): Multitenant architecture, in-memory database.

• Oracle18c (2018): Autonomous database features.

• Oracle19c (2019): Automatic indexing, Active Data Guard DML redirection.

• Oracle21c (2020): Blockchain tables, JSON enhancements.

Oracle versions

From https://redresscompliance.com/evolution-of-oracle-database-versions-all-major-releases/

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 716 April, 2025

DB on Demand at CERN

• DBaaS conceived in 2011

• MySQL, PostgreSQL (Timescale), InfluxDB

• Empowers users to be their own DBA

• Flexible architecture (integration of new technology)

• More than 1200 instances

• ≈600 MySQL, ≈400 PostgreSQL, ≈200 InfluxDB

• ≈150 TB of data

• A number of key database applications:

• DBOD own databases

• Authorization and authentication (SSO)

• Experiments (ATLAS, LHCb, etc.)

• WLCG File Transfer Service

• GitLab, Puppet, Foreman, Teigi (secrets)

• Openstack (nova, ironic)

• Security (some SOC apps)

• Indico, Zenodo, Jira, ServiceNow

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 816 April, 2025

DB on Demand Architecture

• Complex DBaaS environment

• Integrated with CERN infrastructure

• Mostly open source

• Infrastructure as Code

• Deploy on VM/Bare Metal

• Systemd managed services

• NetApp Storage

• data/wals NFS volumes

• snapshot based backups

• EOS (EOS Open Storage)

• snapshots copy archive

• wals archive

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 916 April, 2025

DB on Demand Automation

Web automation

• Automated backup and recovery services

• Upgrade checker to enable self-service upgrades

• once errors and warnings in the report are fixed

• Management of configuration files

• Cloning

• Integrated monitoring

• Integrated upgrades

• Primary-replica upgrade logic

Ops automation

• Continuous validation of backups

• Instance and storage migration

• Automated replica provisioning

• Automated replication switchover

• Detection of idle instances

• Integrated password hash cracker
Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1016 April, 2025

Letting the people choosing their own paths

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1116 April, 2025

Letting the people choosing their own paths...

Michigan State University

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1216 April, 2025

Password reuse:

• across multiple accounts to avoid having to remember multiple complex passwords

Weak passwords:

• to meet complex password requirements

Password rotations:

• Writing down or storing passwords in an insecure location to keep track

Post-it notes:

• near computers or in plain sight to avoid forgetting complex passwords

Shared passwords:

• to simplify access to shared resources

Password managers with weak master passwords:

• defeating the purpose of password management

People take shortcuts and ignore the fixed paths

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1316 April, 2025

Easily guessable security questions:

• "What is your mother's maiden name?"

Same password with slight variations:

• to meet complex password requirements

Publicly available information as passwords or password hints:

• such as birthdays or pet names

Avoiding password-protected systems or applications:

• opting for less secure alternatives instead

Default or vendor-supplied passwords:

• leaving systems vulnerable to attacks

Plain text passwords:

• either digitally or physically, to avoid having to remember complex passwords

People take shortcuts and ignore the fixed paths

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1416 April, 2025

NIST Digital Identity Guidelines

NIST SP 800-63-3

Jun 2017 (incl. updates Dec 2017)

Mar 2020 (incl. updates Mar 2020)

NIST SP 800-63-4

• Jun 2020 Initial Preliminary Draft

• Dec 2022 Initial Public Draft

• Aug 2024 2nd Public Draft

1. NIST SP 800-63A-4 - Identity Proofing and Enrollment

2. NIST SP 800-63B-4 - Authentication and Authenticator Management

3. NIST SP 800-63C-4 - Federation and Assertions

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1516 April, 2025

https://csrc.nist.gov/pubs/sp/800/63/3/upd1/final
https://csrc.nist.gov/pubs/sp/800/63/3/upd2/final
https://csrc.nist.gov/pubs/sp/800/63/4/iprd
https://csrc.nist.gov/pubs/sp/800/63/4/ipd
https://csrc.nist.gov/pubs/sp/800/63/4/2pd
https://csrc.nist.gov/pubs/sp/800/63/a/4/2pd
https://csrc.nist.gov/pubs/sp/800/63/b/4/2pd
https://csrc.nist.gov/pubs/sp/800/63/c/4/2pd

No more periodic password changes (no password expiration)

"Verifiers SHOULD NOT require memorized secrets to be changed
arbitrarily (e.g., periodically). However, verifiers SHALL require
memorized secrets to be changed upon evidence of authenticity
compromise."

(Section 5.1.1.2, "Memorized Secret Authenticators")

Length over complexity

"Verifiers SHOULD require subscriber-chosen memorized secrets to be at
least 8 characters in length. Verifiers SHOULD permit subscriber-chosen
memorized secrets at least 64 characters in length. Verifier systems
SHOULD NOT impose other composition rules (e.g., requiring mix of
uppercase and lowercase letters) on memorized secrets."

(Section 5.1.1.2, "Memorized Secret Authenticators")
NB: Excerpts from NIST SP 800-63-3 June 2017 version

NIST Digital Identity Guidelines

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1616 April, 2025

No password hints or questions

"Verifier systems SHOULD NOT allow users to provide password hints
or other forms of knowledge-based authentication (e.g., security
questions)."

(Section 5.1.1.2, "Memorized Secret Authenticators")

Blocklist of common passwords

"Verifier systems SHOULD maintain a list of compromised or commonly
used memorized secrets (e.g., passwords) and SHOULD NOT allow
these secrets to be stored or used."

(Section 5.1.1.2, "Memorized Secret Authenticators")

NB: Excerpts from NIST SP 800-63-3 June 2017 version

NIST Digital Identity Guidelines

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1716 April, 2025

Risk-based approach to identity proofing

"The level of assurance in an identity proofing process SHOULD be
commensurate with the risk associated with the claimed identity."

(Section 4.2, "Identity Proofing")

Use multi-factor authentication (MFA)

"Multi-factor authentication (MFA) solutions SHOULD be used to
provide a higher level of assurance."

(Section 5.2, "Multi-Factor Authentication")

NB: Excerpts from NIST SP 800-63-3 June 2017 version

NIST Digital Identity Guidelines

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1816 April, 2025

Use authenticator apps

"Verifier systems SHOULD use authenticator apps as a more secure
alternative to SMS-based two-factor authentication."

(Section 5.2.2, "Out-of-Band Verification Using Authenticator Apps")

Prioritize usability

"Verifier systems SHOULD prioritize usability when implementing digital
identity management systems."

(Section 6.1, "Usability and Accessibility")

NB: Excerpts from NIST SP 800-63-3 June 2017 version

NIST Digital Identity Guidelines

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 1916 April, 2025

Address evolving threats,
improve usability,

incorporate lessons learned,
from real-world implementations

since the 2017 version,
while maintaining strong security practices

in password and secret management

NB: What's new according to NIST Special Publication NIST SP 800-63B-4 2pd - August 2024 Version

NIST Digital Identity Guidelines

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2016 April, 2025

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63B-4.2pd.pdf

Password Length:

• minimum 8 characters

• recommended 15 characters

• maximum at least 64 characters

Password Complexity:

• Complexity rules (e.g., requiring mixtures of different character types)
are no longer recommended

• All printing ASCII and Unicode characters should be allowed (increased
entropy, allow national characters)

Further details Appendix A, Strength of Passwords.

NIST Digital Identity Guidelines

NB: What's new according to NIST Special Publication NIST SP 800-63B-4 2pd - August 2024 Version

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2116 April, 2025

https://pages.nist.gov/800-63-4/sp800-63b.html#appA
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63B-4.2pd.pdf

Password Expiration:

• Periodic password changes are no longer required

• Passwords should only be changed if there's evidence of
compromise

Password Screening:

• New and changed passwords must be checked against a blocklist of
common or previously compromised passwords

Password Hints:

• Password hints and authentication questions are not permitted

NIST Digital Identity Guidelines

NB: What's new according to NIST Special Publication NIST SP 800-63B-4 2pd - August 2024 Version

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2216 April, 2025

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63B-4.2pd.pdf

Rate limiting (Throttling):

• Implement throttling to limit failed authentication attempts

Password Managers:

• Allow and encourage the use of password managers

• Enable paste functionality to facilitate password manager use

Passwordless Authentication:

• The updated framework emphasizes passwordless authentication
methods, particularly those offering phishing resistance

Secure Storage:

• Implement salting and hashing using memory-hard functions for secure
password storage

NIST Digital Identity Guidelines

NB: What's new according to NIST Special Publication NIST SP 800-63B-4 2pd - August 2024 Version

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2316 April, 2025

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63B-4.2pd.pdf

Passwordcheck (with cracklib enabled)

postgres=# create user admin with password 'changeme';

ERROR: password must contain both letters and nonletters

postgres=# create user admin with password 'Changem3';

ERROR: password is easily cracked

[in the log DETAIL: cracklib diagnostic: it is based on a dictionary word]

postgres=# create user admin with password 'changem3more!';

CREATE ROLE

postgres=# create user admin with password 'mammami4';

ERROR: password is easily cracked

[in the log DETAIL: cracklib diagnostic: it does not contain enough DIFFERENT characters]

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2416 April, 2025

passwordcheck
Enabling cracklib is not too

difficult but it requires
building postgres from
source.

Beside what is possible with
the simple default
integration, there are other
possibilities for
customization, as
explained at
https://github.com/cracklib/
cracklib/tree/main/src

Ex:
https://github.com/michael
pq/pg_plugins/tree/main/p
asswordcheck_extra

It is also possible to integrate
other word lists in addition
to
/usr/share/dict/wor

ds provided by the words
package.

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2516 April, 2025

https://github.com/cracklib/cracklib/tree/main/src
https://github.com/cracklib/cracklib/tree/main/src
https://github.com/michaelpq/pg_plugins/tree/main/passwordcheck_extra
https://github.com/michaelpq/pg_plugins/tree/main/passwordcheck_extra
https://github.com/michaelpq/pg_plugins/tree/main/passwordcheck_extra

passwordcheck

STATEMENT: create user maurizio with password 'chivaconlozoppoimparaazoppicare';

ERROR: password must contain both letters and nonletters

STATEMENT: create user maurizio with password 'chivaconlozoppoimparaazoppicar3';

ERROR: password is easily cracked

DETAIL: cracklib diagnostic: error loading dictionary

/usr/lib/cracklib_dict.pwd.gz: No such file or directory

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2616 April, 2025

passwordcheck

STATEMENT: create user maurizio with password 'chivaconlozoppoimparaazoppicare';

ERROR: password must contain both letters and nonletters

STATEMENT: create user maurizio with password 'chivaconlozoppoimparaazoppicar3';

ERROR: password is easily cracked

DETAIL: cracklib diagnostic: error loading dictionary

/usr/lib/cracklib_dict.pwd.gz: No such file or directory

install cracklib

yum -y install cracklib cracklib-devel cracklib-dicts words

create dictionary

mkdict /usr/share/dict/* | packer /usr/lib/cracklib_dict

[gzip /usr/lib/cracklib_dict.pw]

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2716 April, 2025

Building cracklib support into passwordcheck (excluded by default for license reasons) is not too difficult:

Install dependencies:

Build the default dictionary with:

(by default for license reasons

passwordcheck

enable CrackLib support by uncommenting the following lines in the Makefile

PG_CPPFLAGS = -DUSE_CRACKLIB '-DCRACKLIB_DICTPATH="/usr/lib/cracklib_dict"'

SHLIB_LINK = -lcrack

sed -i '/PG_CPPFLAGS/s/^#//g' contrib/passwordcheck/Makefile

sed -i '/SHLIB_LINK/s/^#//g' contrib/passwordcheck/Makefile

force password to be at least 15 char

sed -i '/^(\s+)?static(\s+)?int(\s+)?min_password_length(\s+)?=(\s+)?8;(\s+)?$/s/\s+8(\s+)?$/ 15/g'

contrib/passwordcheck/passwordcheck.c

dnf -y install cracklib cracklib-devel cracklib-dicts words

[root@xxx ~]# ls -al /usr/share/dict/*

-rw-r--r--. 1 root root 4953680 Aug 12 2018 /usr/share/dict/linux.words

lrwxrwxrwx. 1 root root 11 Aug 12 2018 /usr/share/dict/words -> linux.words

[root@xxx ~]# mkdict /usr/share/dict/* | packer /usr/lib/cracklib_dict

462982 46298

[root@xxx ~]# ls -al /usr/lib/cracklib_dict.*

-rw-r--r--. 1 root root 1024 Mar 5 17:18 /usr/lib/cracklib_dict.hwm

-rw-r--r--. 1 root root 2435284 Mar 5 17:18 /usr/lib/cracklib_dict.pwd

-rw-r--r--. 1 root root 115760 Mar 5 17:18 /usr/lib/cracklib_dict.pwi

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2816 April, 2025

https://github.com/cracklib/cracklib/blob/main/src/README-LICENSE

passwordpolicy (another customization)

passwordpolicy is like the regular PostgreSQL passwordcheck extension, except it is built with
cracklib and has some configurations options. Unlike the original module, this one has
more strict password checks. The passwordpolicy module checks users' passwords whenever
they are set with CREATE ROLE or ALTER ROLE. If a password is considered too weak, it will
be rejected and the command will terminate with an error.

Website: https://access.crunchydata.com/documentation/passwordpolicy/latest/
Repo: https://github.com/eendroroy/passwordpolicy

p_policy.min_password_len = 8 # Set minimum Password length

p_policy.min_special_chars = 2 # Set minimum number of special chracters

p_policy.min_numbers = 2 # Set minimum number of numeric characters

p_policy.min_uppercase_letter = 2 # Set minimum number of upper case letters

p_policy.min_lowercase_letter = 2 # Set minimum number of lower casae letters

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 2916 April, 2025

https://access.crunchydata.com/documentation/passwordpolicy/latest/
https://github.com/eendroroy/passwordpolicy

passwordcheck

psql — PostgreSQL interactive terminal

\password [username]

Changes the password of the specified user (by
default, the current user). This command
prompts for the new password, encrypts it,
and sends it to the server as an ALTER ROLE
command. This makes sure that the new
password does not appear in cleartext in the
command history1, the server log, or
elsewhere.

1 psql \s, default ~/.psql_history

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3016 April, 2025

passwordcheck

1 https://www.postgresql.org/docs/17/ssl-tcp.html

PostgreSQL has native support for using SSL connections to encrypt client/server communications for

increased security. This requires that OpenSSL is installed on both client and server systems and that

support in PostgreSQL is enabled at build time1

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3116 April, 2025

Computer Security Resource Center (CSRC)

• Cybersecurity and Privacy Reference Tool

• Search for password

• AC-07 UNSUCCESSFUL LOGON ATTEMPT

• AC-12 SESSION TERMINATION

• AU-02 EVENT LOGGING

• IA-02 IDENTIFICATION AND AUTHENTICATION (ORGANIZATIONAL

USERS)

• ...

Tools

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3216 April, 2025

https://csrc.nist.gov/
https://csrc.nist.gov/projects/cprt
https://csrc.nist.gov/projects/cprt/catalog#/cprt/framework/version/SP_800_53_5_1_1/home?keyword=password
https://csrc.nist.gov/projects/cprt/catalog#/cprt/framework/version/SP_800_53_5_1_1/home?keyword=password

hashcat

Main page: https://hashcat.net/hashcat/

Binaries: https://hashcat.net/files/hashcat-6.2.6.7z

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3316 April, 2025

https://hashcat.net/hashcat/
https://hashcat.net/files/hashcat-6.2.6.7z

hashcat

Hash-Mode Hash-Name
Example

12 PostgreSQL
a6343a68d964ca596d9752250d54bb8a:postgres

11100 PostgreSQL CRAM (MD5)
postgres$postgres*f0784ea5*2091bb7d4725d1ca85e8de6ec349baf6

28600 PostgreSQL SCRAM-SHA-256
SCRAM-SHA-
256$4096:IKfxzJ8Nq4PkLJCfgKcPmA==$iRw3qwTp18uaBnsTOEExbtgWdKeBMbSSnZvqD4
sdqLQ=:hPciC1CcnBna3szR8Mf3MVc8t0W7QPbIHoMMrh4zRV0=

from https://hashcat.net/wiki/doku.php?id=example_hashes

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3416 April, 2025

https://hashcat.net/wiki/doku.php?id=example_hashes

hashcat

Hash-Mode Hash-Name
Example

3100 Oracle H: Type (Oracle 7+)
7A963A529D2E3229:3682427524

112 Oracle S: Type (Oracle 11+)
ac5f1e62d21fd0529428b84d42e8955b04966703:38445748184477378130

12300 Oracle T: Type (Oracle 12+)
78281A9C0CF626BD05EFC4F41B515B61D6C4D95A250CD4A605CA0EF97168D670EBCB5
673B6F5A2FB9CC4E0C0101E659C0C4E3B9B3BEDA846CD15508E88685A2334141655046
766111066420254008225

20600 Oracle Transportation Management (SHA256)
otm_sha256:1000:1234567890:S5Q9Kc0ETY6ZPyQU+JYY60oFjaJuZZaSinggmzU8PC4=

from https://hashcat.net/wiki/doku.php?id=example_hashes

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3516 April, 2025

https://hashcat.net/wiki/doku.php?id=example_hashes

hashcat

plugin != caching_sha2_password

200 MySQL323
7196759210defdc0

300 MySQL4.1/MySQL5
fcf7c1b8749cf99d88e5f34271d636178fb5d130

11200 MySQL CRAM (SHA1)
$mysqlna$1c24ab8d0ee94d70ab1f2e814d8f0948a14d10b9*437e93572f18ae44d9e779160c2
505271f85821d

plugin == caching_sha2_password

7401 MySQL A (sha256crypt)
$mysql$A$005*F9CC98CE08892924F50A213B6BC571A2C11778C5*6254793935593939654
14D45316477456B484F41316E64484742577A2E3162785353526B7554584647562F

from https://hashcat.net/wiki/doku.php?id=example_hashes

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3616 April, 2025

https://hashcat.net/wiki/doku.php?id=example_hashes

hashcat
#! /usr/bin/env python3

sqlcmd = r"""
SELECT passwd AS hash, '@node.name@' AS nodename, usename
FROM pg_catalog.pg_shadow
WHERE usename like '@option.roles_like@'
AND (
('@option.roles_type@' = 'all') OR
('@option.roles_type@' = 'unprivileged'
AND NOT (usesuper OR userepl OR usebypassrls)) OR

('@option.roles_type@' = 'privileged'
AND (usesuper OR userepl OR usebypassrls))

);
"""
quoted_sqlcmd = shlex.quote(sqlcmd)
SUCMD = f"sudo -u pg LD_LIBRARY_PATH={LD_LIBRARY_PATH} timeout {TIMEOUT}s "
cmd = f"cd /tmp; {SUCMD} {BIN}/psql -h {socket} -p {port} --quiet --tuples-only
--no-align --no-psqlrc --single-line -U postgres -c {quoted_sqlcmd}"

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3716 April, 2025

mailto:@node.name@
mailto:@option.roles_like@
mailto:@option.roles_type@
mailto:@option.roles_type@
mailto:@option.roles_type@

hashcat
SELECT authentication_string AS hash, '@node.name@' AS nodename, user, host, plugin

FROM mysql.user
WHERE plugin != 'caching_sha2_password'
AND authentication_string NOT LIKE '%INVALIDSALTANDPASSWORD%'
AND user like '@option.roles_like@'
AND (
('@option.roles_type@' = 'all') OR
('@option.roles_type@' = 'unprivileged' AND NOT (Super_priv = 'Y' OR Repl_slave_priv = 'Y' OR Repl_client_priv
= 'Y')) OR
('@option.roles_type@' = 'privileged' AND (Super_priv = 'Y' OR Repl_slave_priv = 'Y' OR Repl_client_priv =

'Y'))
)
UNION
SELECT CONCAT('$mysql', SUBSTR(authentication_string,1,3),
LPAD(CONV(SUBSTR(authentication_string,4,3),16,10),4,0),'*',INSERT(HEX(SUBSTR(authentication_string,8)),41,0,'*')
) AS hash, '@node.name@' nodename, user, host, plugin
FROM mysql.user
WHERE plugin = 'caching_sha2_password'
AND authentication_string NOT LIKE '%INVALIDSALTANDPASSWORD%'
AND user like '@option.roles_like@'
AND (
('@option.roles_type@' = 'all') OR
('@option.roles_type@' = 'unprivileged' AND NOT (Super_priv = 'Y' OR Repl_slave_priv = 'Y' OR Repl_client_priv
= 'Y')) OR
('@option.roles_type@' = 'privileged' AND (Super_priv = 'Y' OR Repl_slave_priv = 'Y' OR Repl_client_priv =

'Y'))
);

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3816 April, 2025

mailto:@node.name@
mailto:@option.roles_like@
mailto:@option.roles_type@
mailto:@option.roles_type@
mailto:@option.roles_type@
mailto:@node.name@
mailto:@option.roles_like@
mailto:@option.roles_type@
mailto:@option.roles_type@
mailto:@option.roles_type@

hashcat (v6.2.6) starting in autodetect mode

You are probably missing the CUDA, HIP or OpenCL runtime installation.

* AMD GPUs on Linux require this driver:

"AMDGPU" (21.50 or later) and "ROCm" (5.0 or later)

* Intel CPUs require this runtime:

"OpenCL Runtime for Intel Core and Intel Xeon Processors" (16.1.1 or later)

* NVIDIA GPUs require this runtime and/or driver (both):

"NVIDIA Driver" (440.64 or later)

"CUDA Toolkit" (9.0 or later)

Started: Mon Mar 24 17:11:11 2025

Stopped: Mon Mar 24 17:11:11 2025

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 3916 April, 2025

[root@madegiortest02 hashcat-6.2.6]# dnf install clinfo

...

[root@madegiortest02 hashcat-6.2.6]# clinfo

Number of platforms 1

Platform Name AMD Accelerated Parallel Processing

Platform Vendor Advanced Micro Devices, Inc.

Platform Version OpenCL 2.1 AMD-APP (3513.0)

Platform Profile FULL_PROFILE

Platform Extensions cl_khr_icd cl_amd_event_callback

Platform Extensions function suffix AMD

Platform Host timer resolution 1ns

Platform Name AMD Accelerated Parallel Processing

Number of devices 0

NULL platform behavior

clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) AMD Accelerated Parallel Processing

...

ICD loader properties

ICD loader Name OpenCL ICD Loaderns

ICD loader Vendor OCL Icd free softwarens

ICD loader Version 2.2.13ns

ICD loader Profile OpenCL 3.0ns

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4016 April, 2025

hashcat

"OpenCL (Open Computing Language) is an open,

royalty-free standard for cross-platform, parallel

programming of diverse accelerators found in

supercomputers, cloud servers, personal computers,

mobile devices and embedded platforms."

Source: https://www.khronos.org/opencl/

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4116 April, 2025

maurizio@pcitdb14:~/git_local/hashcat/hashcat-6.2.6$./hashcat.bin -I

hashcat (v6.2.6) starting in backend information mode

OpenCL Info:

============

OpenCL Platform ID #1

Vendor..: The pocl project

Name....: Portable Computing Language

Version.: OpenCL 2.0 pocl 1.8 Linux, None+Asserts, RELOC, LLVM 11.1.0, SLEEF, DISTRO, POCL_DEBUG

Backend Device ID #1

Type...........: CPU

Vendor.ID......: 128

Vendor.........: GenuineIntel

Name...........: pthread-Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

Version........: OpenCL 1.2 pocl HSTR: pthread-x86_64-pc-linux-gnu-haswell

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4216 April, 2025

mailto:maurizio@pcitdb14:~/git_local/hashcat/hashcat-6.2.6$

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4316 April, 2025

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4416 April, 2025

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4516 April, 2025

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4616 April, 2025

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4716 April, 2025

hashcat

Maurizio De Giorgi - Miroslav Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 4816 April, 2025

“Big red” part
Miro Potocky

16 April 2025 49

Humble Introduction

• Software engineer by school

• Network engineer by studying

• Storage admin by chance

• Oracle DBA by (hopefully not just) title

• Ex HP, HPE

• Calling CERN 127.0.0.1 since 2013

• DB Services team lead

• m(dot)p(at)cern.ch

5016 April, 2025

• 11,915 Oracle accounts as of 25.March 2025

• Organically grown with love since the 80’s

• Still serving 10g () clients

• Oldest – still used – application in PROD is from Oracle 8i times

• Cordoned off to separate instance with strict(-ish) firewall

• Refused to die^H^Hecomission despite periodic verbal threats

• VERY specific users and requirements

• Physicists – theoretical and real ones

• Experiment and machine operators

• Business computing developers

• Data scientists

• Various lucky (/s) people tasked with maintaining legacy software with minimum usable documentation

Oracle DB accounts landscape

51Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN

• Cause

• Legacy, exceptions, excuses, yadda - yadda

• User reluctance, caution or missing responsibility

• Result

• Oracle schemas with 10g, 11g, 12c and above password hashes

SQL> select distinct password_versions from dba_users;

PASSWORD_VERSIONS

10G (!!!!)

11G 12C

10G 11G

…

• Old passwords update frequency is inversely proportional to number of locations where the
password is stored and used and the proportion is compounded by age

• Number of locations where the password is stored is directly proportional to intensity of
requests to not expire it

The “Age” problem

Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 5216 April, 2025

• I hope you remember what Maurizio said before (prizes!)

• Essentially implementation differs only slightly

• No need for client side password wrangling – everything server side

• Did you enable Native Network Encryption!?

SQLNET.ENCRYPTION_SERVER=REQUIRED

SQLNET.ENCRYPTION_TYPES_SERVER=(AES256)

• TLS works too

• Nuke old clients

SQLNET.ALLOWED_LOGON_VERSION_SERVER=12a

• Password verify function

• See ?/rdbms/admin/utlpwdmg.sql

• ora12c_verify_function and ora12c_strong_verify_function

• Multitenancy note: 21c - CREATE MANDATORY PROFILE c##omni_profile LIMIT

PASSWORD_VERIFY_FUNCTION ora12c_verify_function CONTAINER = ALL;

The solution

Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 5316 April, 2025

Row, row, update row, gently in the tab

Verify, verify, verify, verify hash is just a map.

- Unknown author (probably DBA)

• Ora12c_verify_function

• Password at least 8 characters, at least 1 letters, at least 1 digits, must not contain database name, must

not contain user name or reverse user name, must not contain oracle, password must differ by at least 3

characters from the old password, must not be too simple like welcome1

• Most of the rules are self-explanatory and simple to adapt

• But “must not be too simple like welcome1” – how is that checked?

• IF pw_lower IN ('welcome1', 'database1', 'account1', 'user1234',

'password1', 'oracle123', 'computer1',

'abcdefg1', 'change_on_install') THEN … bad password!

• We can do better than that!

Verify, verify, verify

Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 5416 April, 2025

• https://github.com/cracklib/cracklib/tree/main/words/files

• External (table) help

• CREATE DIRECTORY my_wordfiles AS ….

• CREATE TABLE wordfile (word varchar2(4000))

ORGANIZATION EXTERNAL (

DEFAULT DIRECTORY my_wordfiles

ACCESS PARAMETERS (

RECORDS DELIMITED BY NEWLINE

FIELDS TERMINATED BY ‘,’

LOCATION ‘wordfile.txt’)

);

• IF pw_lower IN (SELECT * FROM wordfile) … bad password!

• Lots of fun can also be had with the string_distance function of utlpwdmg.sql

Cracklib’s handy wordlists

Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 5516 April, 2025

https://github.com/cracklib/cracklib/tree/main/words/files

SELECT username, password FROM dba_users; --Not since 2003

• Peek at sys.user$

• PASSWORD column with 10g hash visible

• SPARE4 column

• Multiple hashes visible

• Concatenated hashes with identifiers (T – 12c, None – 10g, H: XDB, S: 11g)

• Example:
‘T:511A70048CFB5B531196CDD2CB51393E05E3FBFB0CB019DB39AB4AAB717BB23CA7FB2EA0A

D4F60B34C38C9B84F97BA0C6A4A7530362FBF23492FB02139442AB758645C9EA1D1E33C33CB9

454D0468BF9;AEB6397C8E7598A7;H:55C984560827F4CE3A0F926B2A50C7DC;S:7233E3A91B

45F6B813BCFFB5D8669167CB4F498D0642558A8A3BB39948C0’;

• Easy extraction with SELECT REGEXP_SUBSTR(spare4, ‘T:[^;]+')

(Dude) where’s my hash?

Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 5616 April, 2025

• 10g as worst case

• DES-CBC with fixed key

• 8 lowercase characters password (26^8 = 208827064576 combinations)

• Normal commodity HW (ex. NVidia A5000 or 5090) gets over 67000MH/s for DES hash

(https://gist.github.com/Chick3nman)

• 8 Chars in several seconds

• 10 Chars in 0.5h

• 12 Chars in 17days

• Nice stuff (e.g. NVidia H100) gets over 78000MH/s

• You can get 8xH100 node for $10/h (https://www.oracle.com/cloud/price-list/)

• 12 Chars in 42h for $420

• 14 Chars in 24days for measly $288k (with 50 H100 nodes)

• Rainbow tables makes things even more interesting since the salt is known

Better be quick with the change

Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 5716 April, 2025

https://gist.github.com/Chick3nman
https://www.oracle.com/cloud/price-list/

• It’s people.

• Nobody likes to change “things that work”

• Admins can’t just UPDATE sys.user$ and watch the world burn

• However, one can ALTER USER name IDENTIFIED BY VALUES ‘T:ABCD123……’;

• Password rollover enabled for limited amount of time helps a lot

• ALTER PROFILE existingProfile LIMIT PASSWORD_ROLLOVER_TIME 1; -- days

• SELECT * FROM unified_audit_trail WHERE action_name='LOGON’ AND

authentication_type LIKE '%VERIFIER=11G-OLD%’; -- or %VERIFIER=12C-OLD%

• Not available for administrative users (e.g. SYS)

• Can’t be used for KRB, Cert, RADIUS, CMU …

So where’s the problem?

Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 5816 April, 2025

• 12c hash only

• Significantly larger hash with 160 characters compared to 16 before

• Hash-rate with H100s is in kH/s – not (yet) viable for brute forcing (still susceptible to wordlist attacks)

• Case sensitive and much stronger cipher

• Watch for: sec_case_sensitive_logon=FALSE

• SPARE4 column contains only 12c “T: hashes”

• Password verify function follows NIST rules AND checks word/password lists

• Educated users understanding no-expiration password is not an option

• Periodic change of passwords unless you can verify 2nd factor

• Dead tree version of account policy to wave around and hide behind

• Enabled password rollover to win some brownie points back after all above

Even best passwords are leaked – therefore AUDIT!

End game

Maurizio De Giorgi - Miro Potocky | Implementing NIST password guidelines on PostgreSQL and Oracle at CERN 5916 April, 2025

home.cern

4️⃣ -

	Folie 1: Implementing NIST password guidelines on PostgreSQL and Oracle at CERN How-To, Challenges and Opportunities
	Folie 2: Maurizio De Giorgi
	Folie 3
	Folie 4: The Large Hadron Collider
	Folie 5: The Worldwide LHC Computing Grid (WLCG)
	Folie 6: Oracle at CERN
	Folie 7: Oracle versions
	Folie 8: DB on Demand at CERN
	Folie 9: DB on Demand Architecture
	Folie 10: DB on Demand Automation
	Folie 11: Letting the people choosing their own paths
	Folie 12: Letting the people choosing their own paths...
	Folie 13: People take shortcuts and ignore the fixed paths
	Folie 14: People take shortcuts and ignore the fixed paths
	Folie 15: NIST Digital Identity Guidelines
	Folie 16: NIST Digital Identity Guidelines
	Folie 17: NIST Digital Identity Guidelines
	Folie 18: NIST Digital Identity Guidelines
	Folie 19: NIST Digital Identity Guidelines
	Folie 20: NIST Digital Identity Guidelines
	Folie 21: NIST Digital Identity Guidelines
	Folie 22: NIST Digital Identity Guidelines
	Folie 23: NIST Digital Identity Guidelines
	Folie 24: Passwordcheck (with cracklib enabled)
	Folie 25: passwordcheck
	Folie 26: passwordcheck
	Folie 27: passwordcheck
	Folie 28: passwordcheck
	Folie 29: passwordpolicy (another customization)
	Folie 30: passwordcheck
	Folie 31: passwordcheck
	Folie 32: Tools
	Folie 33: hashcat
	Folie 34: hashcat
	Folie 35: hashcat
	Folie 36: hashcat
	Folie 37: hashcat
	Folie 38: hashcat
	Folie 39: hashcat
	Folie 40: hashcat
	Folie 41: hashcat
	Folie 42: hashcat
	Folie 43: hashcat
	Folie 44: hashcat
	Folie 45: hashcat
	Folie 46: hashcat
	Folie 47: hashcat
	Folie 48: hashcat
	Folie 49: “Big red” part
	Folie 50: Humble Introduction
	Folie 51: Oracle DB accounts landscape
	Folie 52: The “Age” problem
	Folie 53: The solution
	Folie 54: Verify, verify, verify
	Folie 55: Cracklib’s handy wordlists
	Folie 56: (Dude) where’s my hash?
	Folie 57: Better be quick with the change
	Folie 58: So where’s the problem?
	Folie 59: End game
	Folie 60

