
Troubleshooting Funny Issues
Real Life Case Studies
SOUG Day 02/2024

2024-09-20

Christoph Lutz

Thomas Mayer

Why this Session?

 Troubleshooting is a large part of our job and both, an art and science at the same time

 Complex problems can only be solved by following a systematic approach, which means we
must understand them!

 Oracle offers a wealth of diagnostics, most of them not publically documented though

 Learn about new perspectives , tools and ideas to become more effective at systematic

troubleshooting

A Word of Caution

This is a low-level technical presentation about internal and undocumented behavior

Beware that:

 Things can change across different versions and patch levels

 My observations, findings and interpretations may be inaccurate or wrong

 Some of the techniques shown in this presentation are dangerous – use them at your own risk!

Case 1:
Shared Pool Latch Contention

Starting Situation – Problem Description

Connection test elapsed times increase over time.

Simple "SELECT 1 FROM DUAL" statement.

Starting Situation – Shared Pool Latch Contention (AWR)

Massive shared pool latch contention (54 % of total db time).

This is clearly not healthy!

Very long avg wait time (373 ms).

Is this related to the connection test slow down and how?

Shared Pool Latch Contention – Latch Miss Sources (V$LATCH_MISSES)

unknown latch

In some 19c RUs, the shared pool latch is wrongly displayed as
"unknown latch" in the AWR Latch Miss Sources section.

Where

Code location where the latch is held (not request location)

kghalo Kernel Generic Heap Manager Allocate
=> Allocate a chunk of memory in the shared pool.

kghfre Kernel Generic Heap Manager Free
=> Free a chunk of memory in the shared pool.

Sleeps

Number of times that a process slept while the latch was held

from this location (blocker information).

Waiter Sleeps

Number of times that a process slept while requesting the latch
from this location (blockee information).

This AWR section only exposes counters, but no details on :
 latch hold time
 hot code paths resulting in a latch get

The latch gets were caused by memory allocation and deallocation!

Shared Pool Latch Contention – Systematic Analysis with latchprofx

SQL> @latchprofx.sql sid,name,hmode,func % "shared pool" 100000

SID NAME HMODE FUNC Held Gets Held % Held ms Avg hold ms

------ ------------ ------------ ------------------ --------- ------- ------- --------- -------------

1043 shared pool exclusive kghfnd: req scan 69579 36 69.58 24359.608 676.656
1043 shared pool exclusive kghalo 47 47 .05 16.455 .350

1043 shared pool exclusive kghfre 17 17 .02 5.952 .350

88 shared pool exclusive kghalo 12 12 .01 4.201 .350

1702 shared pool exclusive kghalo 11 11 .01 3.851 .350

1727 shared pool exclusive kghfre 11 11 .01 3.851 .350

1115 shared pool exclusive kghalo 10 10 .01 3.501 .350

…

Session 1043 held the shared pool latch 69.5 % of the time with an avg hold time of ~0.7 sec !

kghfnd = Kernel Generic Heap manager FiND => find a free chunk of memory in the shared pool

latchprofX.sql Script Source: Tanel Poder, TPT Github Repository, latchprofx.sql

Session 1043 was exclusively holding the shared pool latch while searching for free memory in the shared pool!

What is a Latch?

P1 Latch P2

get (ok)

get (fail)

get (ok)

spin

release

sleep

get (fail)

post waiter

Latches are Oracle's implementation of "adaptive spin-locks".

Historically, latches used an exponential back-off wait scheme.
This no longer applies to modern versions of Oracle!

At the instruction level, latches use an atomic cmpxchg instruction
(on x86-64).

Oracle Latches – C Function Signatures

kslgetl(laddr, wait, why, where)

ksl_get_shared_latch(laddr, wait, why, where, mode, new_value)

kslfre(laddr)

Exclusive Latch Acquisition

Shared Latch Acquisition

Latch Release

Function and parameter names source: Andrey Nikolaev, Latch internals, RUOUG Seminar, 2012-12-06

laddr: Address of latch in SGA

wait: flag for no-wait (0) or wait (1) mode

where: code location where latch is acquired
(maps to x$kslw.indx)

why: Context and reason why latch is acquired
at "where" (x$kslw.ksllwlbl)

mode: Requested state for shared latches
(8=SHARED, 16=EXCLUSIVE)

new_value: value to determine latch state
0x1, 0x2, etc. – shared latch held by 1, 2, etc.
processes
0x20000000 | pid – shared latch held
exclusively

Function Parameters

Shared Pool Latch Contention – Systematic Analysis with bpftrace (1/2)

select lower(addr) from v$latch

where name = 'shared pool'

union

select lower(addr) from v$latch_children

where name = 'shared pool'

/

ADDR

0000000060079380
00000000604746d8
0000000060474778
0000000060474818
00000000604748b8
0000000060474958
00000000604749f8
0000000060474a98

#define KSPSSIDST 0x60009628

#define LADDR0 0x60079380

#define LADDR1 0x604746d8

#define LADDR2 0x60474778

#define LADDR3 0x60474818

#define LADDR4 0x604748b8

#define LADDR5 0x60474958

#define LADDR6 0x604749f8

#define LADDR7 0x60474a98

uprobe:$ORACLE_HOME/bin/oracle:kslgetl

/ str(uptr(KSPSSIDST)) == str($1) /

{

if (arg0 == LADDR0 ||

arg0 == LADDR1 ||

arg0 == LADDR2 ||

arg0 == LADDR3 ||

arg0 == LADDR4 ||

arg0 == LADDR5 ||

arg0 == LADDR6 ||

arg0 == LADDR7)

{

@[ustack()] = count();
}

}

Collect and count all code paths

(stack traces) that acquire one of

the shared pool latches (for the

given instance in $1).

Shared Pool Latch Contention – Systematic Analysis with bpftrace (2/2)

Example Script Output

…

@[

kslgetl+0
kghalo+5925
ksp_param_handle_alloc+932

kspcrec+228

ksucre+822

kxfpProcessJoin+1236

kxfpProcessMsg+695

kxfpqidqr+1524

kxfprdp_int+1677

opirip+619

opidrv+581

sou2o+165

opimai_real+173

ssthrdmain+417

main+256

]: 2001
…

Function Names & Prefixes

kslgetl – Kernel Service Layer Get Latch (exclusive latch get)
kghalo – Kernel Generic Heap Manager Allocate
ksp – Kernel Service Parameter
ksucre – Kernel Service User Create User Session
kxfp – Kernel eXecution Parallel Query Process
opi – Oracle Programm Interface

The call stack sampling shows what

code path called into kslgetl and how

many times in total the code path got

executed (by all Oracle processes of a

particular instance).

Call stacks can answer why the shared pool latch was
requested.

But how can we efficiently analyze and aggregate
thousands of different call stacks?

=> Flame Graphs!

Shared Pool Latch Contention – Flame Graphs Visualization

Idea

Visualize stack traces to identify frequent and "hot" code paths.

Interpretation

• x-axis: stack profile population. This is not the passage of time!

• y-axis: stack depth

The wider a frame, the more often it was present in the stacks. Look for plateaus.

Source: Brendan Gregg, Flame Graphs, 2020-10-31

Shared Pool Latch Contention – Flame Graphs Creation

1. Collect stack traces

$ BPFTRACE_CACHE_USER_SYMBOLS=1 ./kslgetl.bt MY_ORACLE_SID > stacks.txt

2. Collapse bpftrace call stacks

$./stackcollapse-bpftrace stacks.txt > stacks-folded.txt

3. Generate Flame Graph

$./flamegraph.pl stacks-folded.txt > stacks.svg

bpftrace symbol lookups are

costly and slow, therefore it is

highly recommended to cache

symbol lookups!

Shared Pool Latch Contention – Flame Graphs

"Hairy graph" - no plateaus are standing out.

Activity can hardly be attributed to particular
code paths.

This pattern typically occurs with lock contention.

We can also reverse the merge order of flame graphs
(merge from leaf to root instead of root to leaf)

"Hairy graph" – many

small frames, but no

plateaus clearly stand-

ing out!

Shared Pool Latch Contention – Reverse Flame Graph

The reverse graph on the left now shows two plateaus
standing out:

Shared pool memory allocation
due to spawning

PX sessions.

Shared pool memory release
due to tearing down PX

sessions.

Plateau 1 Plateau 2

Plateau 1
Plateau 2

kslgetl+0

kghalo+5925

ksp_param_handle_alloc+932

kspcrec+228

ksucre+822

kxfpProcessJoin+1236

kfxpProcessMsg+695

kxfpqidqr+1524

kxfprdp_int+1677

ksbdispatch+367

opirip+522

opidrv+581

sou2o+165

opimai_real+173

ssthrdmain+417

main+256

kslgetl+0

kghfre+3989

ksp_param_handle_free+779

kspdesc+142

ksmugf+208

ksuxds+3812

kss_del_cb+218

kssdel+228

ksudel_int+280

ksudel+68

kxfpdqs+284

kxfprdp_int+4566

ksbdispatch+367

opirip+522

opidrv+581

sou2o+165

opimai_real+173

ssthrdmain+417

main+256

Shared Pool Latch Contention – V$PX_SESSIONS

SQL> select px.sid sid, s.sql_id

from v$px_session px, v$session s

where px.saddr = s.saddr;

SID SQL_ID

------- -------------

105 505a4v8cyx05c

278 505a4v8cyx05c

807 505a4v8cyx05c

57 505a4v8cyx05c

374 505a4v8cyx05c

2920 505a4v8cyx05c

534 505a4v8cyx05c

1941 505a4v8cyx05c

1336 505a4v8cyx05c

2424 505a4v8cyx05c

546 505a4v8cyx05c

2743 505a4v8cyx05c

771 505a4v8cyx05c

2947 505a4v8cyx05c

1088 505a4v8cyx05c

...

38 rows selected.

Manual sampling of V$PX_SESSIONS showed this pattern:

SIDs changing rapidly, but SQL_ID always 505a4v8cyx05c

More PX sessions than defined by parallel_max_servers=32

=> PX downgrades

PX session allocation and deallocation thrashes the shared pool!

Shared Pool Latch Contention – SQL 505a4v8cyx05c Execution Plan

Optimizer estimates 6 rows only. Does this really have to run in parallel?

Shared Pool Latch Contention – SQL Execution Statistics (AWR)

This query has >19,000 executions and takes < 0.3 sec to complete.

This is not a good candidate to run in parallel!

Why is it still running in parallel then?

Shared Pool Latch Contention – Index Degree Of Parallelism (DOP)

SQL> select index_name, degree

from dba_indexes where owner = '&&owner'

and (degree = 'DEFAULT' or degree > 1);

INDEX_NAME DEGREE

------------------------------ ----------

UQ_PARAMETERVALUE 16

IX_PARAMETERVALUE_VALUE_NAME 16

PK_PARAMETERVALUE 16

IX_PARAMVAL_PARENT_ID 16

SQL> alter index &&owner.IX_PARAMVAL_PARENT_ID parallel 1;

Index DOP of 16.

Reason is unknown (vendor default?).

The query should run in serial!

Moral of the story:

parallel != better or faster

Shared Pool Latch Contention – A Picture tells a thousand words …

Index DOP = 1

Why was the Connection Test slowed down?

pid: 244124

kslgetl+0
kghalo+8764
kss_init_private_so_cache+134
kss_init_proc+128
ksucrp+1114
opiino+1394

opiodr+1253

opidrv+1094

sou2o+165

opimai_real+422

ssthrdmain+417

main+256

kslgetl Acquire the shared pool latch in X mode.

kghalo Allocate shared pool memory. This
requires an exclusive shared pool latch get.

kss_init Session initialization; create new State
Objects (SO) that require shared pool memory.

ksucrp Create and initialize a new process.

These shared pool latch waits are not exposed in v$session or in ASH, because no session exists yet!

Session Creation Code Path

Shared Pool Latch Contention – Latch Structure Memory Layout

DEMO

SQL> select '0x'||trim(0 from addr) laddr

from v$latch_children where name = 'shared pool'

and rownum = 1;

LADDR

0x604746D8

Latch free/unused

(gdb) x/6xw 0x604746D8

0x604746d8: 0x00000000 0x00000000 0x019457d9 0x3700026b 0x0000000a 0x0000189a

Latch held (in X mode)

(gdb) x/6xw 0x604746D8

0x604746d8: 0x00000000 0x0000006c 0x019457d9 0x3700 026b 0x0000000a 0x0000189a

pid^^ gets ?? latch# level^ location

When a latch is held in eXclusive

mode, the Oracle pid (v$process.pid)

is stored in the first 8-byte word of

the latch structure.

Addresses of the latch

structures are exposed in

v$latch and v$latch_children.

We can directly access these

with non-Oracle tools ... :-)

Caveat – Noisy Neighbors

Latches are CDB-level structures

In a Multitenant environment, rogue PDBs will negatively impact other PDBs!

Case 2:
PGA Memory Leak

Starting Situation

PGA_AGGREGATE_LIMIT

PGA Memory Issues – Diagnostics

PGA

Diagnostics

Automatic Trace
and Incident Dumps

PGA
Heapdumps

Active Session
History (ASH)

Custom Tracing
(bpftrace)

Process
Memory Trace

ORA-4036 – Oracle Diagnostics: Process Trace File

=======================================

PRIVATE MEMORY SUMMARY FOR THIS PROCESS

**

PRIVATE HEAP SUMMARY DUMP

699 MB total:

697 MB commented, 1181 KB permanent

561 KB free (192 KB in empty extents),

696 MB, 1 heap: "session heap " 64 KB free held

--

Summary of subheaps at depth 1

697 MB total:

694 MB commented, 149 KB permanent

2245 KB free (44 KB in empty extents),

695 MB, 14 heaps: "koh-kghu sessi " 2099 KB free held

--

Summary of subheaps at depth 2

693 MB total:

689 MB commented, 102 KB permanent

4077 KB free (0 KB in empty extents),

344 MB, 22034 chunks: "PLSQL Collection Bind " 2012 KB free held

344 MB, 22033 chunks: "PLSQL Collection Bind Poin" 2012 KB free held

**

KOH = Kernel Objects Heap

Automatically created when

an ORA-4036 occurs.

Oracle KGH – Kernel Generic Heap Allocator

Extent

Chunk

Chunk

Chunk ds=0x123

Chunk

Chunk

Chunk

Heap

Extent

Extent

Extent

Extent

Extent

Extent

Extent

Extent

Extent

Subheap

desc=0x123

Extent

Extent

Extent

Extent

Chunk ds=0x321

Chunk

Chunk

Sub-Subheap

desc=0x432

Extent

Extent

Extent

Extent
Extent

Chunk

Chunk ds=0x432

Chunk

Chunk

Chunk

Chunk

Subheap

desc=0x321

Extent

Extent

Extent

Extent

Top Level Level 1 Level 2

Extent

Chunk

Chunk ds=0x432

Chunk

The KGH allocator is used for SGA and

PGA memory allocations.

Heap and chunk details are exposed

via the following x$ tables:

- SGA heaps: X$KSMSP

- PGA heaps: X$KSMPP

- UGA heaps: X$KSMUP

Oracle KGH – Chunk Classes & Descriptions

Extent

Chunk

Chunk

Chunk

Chunk

Chunk

Chunk

Heap

Extent

Extent

Extent

Extent

Extent

Extent

Extent

Extent

Extent

Extent

Chunk

Chunk

Chunk

Chunk Classes:

free

Chunk is free and can be used (chunk on freelist).

freeable

Chunk is in-use, but can be released (chunk not on LRU list).

recreatable

Chunk is in-use, but can be removed and reconstructed if needed
(unpinned recreatable chunks are on LRU list).

permanent

Chunks in this state will never be released.

Chunk Descriptions:

Most chunks are associated with a description / comment that provides
additional context information on what a chunk is used for.

Freeable chunks can only be freed via

the object that allocated them. That is,

the KGH memory manager cannot

arbitrarily free "freeable" chunks under

memory pressure (e.g. a SQLA can only

be freed via KGL callbacks).

Memory Leaks – Key Question

Who is allocating what over time?

Context:

- sudden and
bursty increase?

- slow and steady
increase?

Context:

- session id
- username
- sql id
- module / action

Context:

- heaps
- (sub-)subheaps
- chunks
- allocation size

PGA Heap Dumps – Examples

Level 1

PGA summary - dump all PGA top level private heaps: PGA, UGA and call heap

SQL> oradebug dump heapdump 1

Level 0x20000001 (decimal 536870913 = 536870912 + 1)

Private memory dump of top PGA heap + 2 levels of subheap dump recursion

SQL> oradebug dump heapdump 536870913

Level 0x20000005 (decimal 536870917 = 536870912 + 1 + 4)

Private memory dump of top PGA and UGA heaps + 2 levels of subheap dump recursion

SQL> oradebug dump heapdump 536870917

PGA Heap Dumps – TPT Heapdump Analyzer

-- Heapdump Analyzer v1.03 by Tanel Poder (https://blog.tanelpoder.com)

Total_size #Chunks Chunk_size, From_heap, Chunk_type, Alloc_reason
------------ ------- ------------ ----------------- ----------------- -----------------

337718304 20724 16296 , koh-kghu sessi, freeable, PLSQL Collectio
241155920 230 1048504 , session heap, freeable, koh-kghu sessi
138411240 33 4194280 , top uga heap, freeable, session heap
104856400 50 2097128 , top uga heap, freeable, session heap

52427600 50 1048552 , top uga heap, freeable, session heap

46134528 44 1048512 , session heap, freeable, koh-kghu sessi

26213200 50 524264 , top uga heap, freeable, session heap

20444736 39 524224 , session heap, freeable, koh-kghu sessi

13106000 50 262120 , top uga heap, freeable, session heap

7600320 29 262080 , session heap, freeable, koh-kghu sessi

6552400 50 131048 , top uga heap, freeable, session heap

5766376 11 524216 , session heap, freeable, koh-kghu sessi

[…]

Script source: Tanel Poder, tpt-oracle Github Repository, Script "heapdump_analyzer"

PGA Heap Dump Analysis – Summary

Who?

Must know the rogue

session upfront!

What?

Detailed break-down at

chunk level.

Post-processing needed!

Time

Just a snapshot in time!

No history!

Process Memory Trace – Examples

Trace Commands

alter session set events

'immediate trace name PGA_DETAIL_GET level <v$process.pid>';

oradebug setospid <ospid>

oradebug unlimit

oradebug dump PGA_DETAIL_GET <v$process.pid>

Every trace execution updates the V$PROCESS_MEMORY_DETAIL and you

must manually save the trace output as it will get overwritten otherwise!

To clear the trace data, use the

PGA_DETAIL_CANCEL trace event.

Process Memory Trace – V$PROCESS_MEMORY_DETAIL

SQL> desc V$PROCESS_MEMORY_DETAIL

Name Null? Type

----------------------- -------- ------------

PID NUMBER

SERIAL# NUMBER

CATEGORY VARCHAR2(15)

NAME VARCHAR2(26)

HEAP_NAME VARCHAR2(15)

BYTES NUMBER

ALLOCATION_COUNT NUMBER

HEAP_DESCRIPTOR RAW(8)

PARENT_HEAP_DESCRIPTOR RAW(8)

CON_ID NUMBER

SQL> desc X$KSMPGDSTA

Name Null? Type

------------------- -------- ------------

ADDR RAW(8)

INDX NUMBER

INST_ID NUMBER

CON_ID NUMBER

KSMPGDSTA_PID NUMBER

KSMPGDSTA_SER NUMBER

KSMPGDSTA_PAFLG NUMBER

KSMPGDSTA_TIME DATE
KSMPGDSTA_SQLID VARCHAR2(13)
KSMPGDSTA_TOTMB NUMBER

KSMPGDSTA_COMMENT VARCHAR2(26)

KSMPGDSTA_CATNAME VARCHAR2(15)

KSMPGDSTA_HEAPNAME VARCHAR2(15)

KSMPGDSTA_NUM_ALLOC NUMBER

KSMPGDSTA_BYTES_ALLOC NUMBER

KSMPGDSTA_DS RAW(8)

KSMPGDSTA_PARENT_DS RAW(8)

21c+: TIME and SQLID columns are

exposed in the v$ view

19c: TIME and SQLID columns are

populated in the x$ table in 19.18+,

but not exposed in the v$ view!

Process Memory Trace – Automatic Snapshot Behavior

Important Notes:

 With fix 21533734, an automatic snapshot of the fg process memory usage
is taken when a process uses >500 MB of PGA and each 20% growth after that.

 Fix 21533734 is first included in Oracle versions 19.18 and 20.1.

 The behavior can be controlled via the following underscore parameters:

• _pga_auto_snapshot_percentage (default 20 percent)

• _pga_auto_snapshot_threshold (default 500 MB)

Source: My Oracle Support: Bug 21533734 - V$process_memory_detail should be automatically populated (Doc ID 21533734.8)

Process Memory Trace – Summary

Who?

Must know rogue session

upfront.

New time and sql_id

fields in 19.18+.

What?

Detailed break-down at

chunk level.

Post-processing needed!

Time

Just a snapshot in time!

No history!

PGA Memory Leaks – Active Session History (ASH)

SQL> desc DBA_HIST_ACTIVE_SESS_HIST

Name Null? Type

--------------------------- -------- ------------

SNAP_ID NOT NULL NUMBER

DBID NOT NULL NUMBER

INSTANCE_NUMBER NOT NULL NUMBER

SAMPLE_ID NOT NULL NUMBER

SAMPLE_TIME NOT NULL TIMESTAMP(3)

…

SQL_ID VARCHAR2(13)
SQL_OPNAME VARCHAR2(64)
PLSQL_ENTRY_OBJECT_ID NUMBER
PLSQL_ENTRY_SUBPROGRAM_ID NUMBER
PLSQL_OBJECT_ID NUMBER
PLSQL_SUBPROGRAM_ID NUMBER
[…]

PGA_ALLOCATED NUMBER

The Active Session History provides a lot of context information and a historical activity record!

PGA Memory Leaks – ASH Example Query (Starting Point)

select

sample_time,

session_id,

sql_opname,

top_level_sql_id,

sql_id,
sql_child_number,
sql_plan_line_id,
in_parse,
in_hard_parse,
in_sql_execution,
round(pga_allocated/1024/1024,1) pga_mb

from

dba_hist_active_sess_history

where

session_id = &&sid

and sample_time between timestamp'&&start_time' and timestamp'&&end_time'

and instance_number = (select instance_number from v$instance)

order by sample_time

/

With ASH you can narrow down into

statement and execution plan line

details!

Active Session History (ASH) – Summary

Who? What?

Shows only total PGA, no

detailed break-down!

Time

Always on.

Drill-down possible.

Historical track record

(1 or 10 sec resolution).

Oracle KGH – Memory Allocation Functions

kghalp(arg0, arg1, arg2, arg3, arg4, char *comment)

kghalf(arg0, arg1, arg2, arg3, arg4, char *comment)

kghfre(…)

kghalp – Kernel Generic Heap Manager Allocate Permanent chunk

kghalf – Kernel Generic Heap Manager Allocate Freeable chunk

kghfre – Kernel Generic Heap Manager Free chunk

Function Parameters*

- arg0 – 4: Unknown
- arg5: comment - Chunk comment

The KGH functions are called whenever a memory chunk is allocated or freed!

*Function and parameter names source:
Tanel Poder, tpt-oracle, Script "trace_kghal.sh"

Oracle KGH – Tracing Idea

uprobe:/u01/app/oracle/product/19.0.0.0/dbhome_1919_1/bin/oracle:kghalp,
uprobe:/u01/app/oracle/product/19.0.0.0/dbhome_1919_1/bin/oracle:kghalf,
/ str(@kspssidst) == "MY_ORACLE_SID" &&

(str(arg5) == "PLSQL Collection Bind" || str(arg5) == "PLSQL Collection Bind Pointer") /
{

@in_trace[tid] = 1;

@func[tid] = func;

@reason[tid] = (uint64) arg5;

$reason = @reason[tid];

$fsbase = uptr(curtask->thread.fsbase);

/* x$ksupr offsets */

$paddr_off = (uint64) 0xff90; /* tls offset */

$ksuprpum_off = (uint64) 0xe90; /* pga used */

$ksuprpnam_off = (uint64) 0xe70; /* pga alloc1 */

$ksuprpram_off = (uint64) 0xe58; /* pga alloc2 */

/* x$ksupr data */

$paddr_p = uptr($fsbase - $paddr_off);

$paddr = *(uint64 *) uptr($paddr_p);

$pga_used = *(uint64 *) uptr($paddr + $ksuprpum_off);

$pga_alloc1 = *(uint64 *) uptr($paddr + $ksuprpnam_off);

$pga_alloc2 = *(uint64 *) uptr($paddr + $ksuprpram_off);

$pga_alloc = (uint64) ($pga_alloc1 + $pga_alloc2);

[…]

}

Trace every kghalp

and kghalf call.

Script idea based on:

Stefan Koehler, soocs-scripts Github Repository, Script dtrace_kghal_pga_code.sh

Tanel Poder, TPT Github Repository, Script trace kghal.sh

Enrich trace with additional context

information from v$session and

v$process.

Oracle KGH – Trace Output

Emit a stack trace

when kghalp or

kghalf allocate new

physical memory!

TIME : Time of allocation
PID : OS pid
SID : Session id
SQLH : SQL hash value
PLSQL_OBJ : PL/SQL object id
PLSQL_SUB : PL/SQL subobject id
PGA_USED : PGA memory currently used
USED_FUNC : Increase in PGA used mem by function

U_DIFF_RUN : PGA used mem runtime difference (since script start)
PGA_ALLOC : PGA memory currently allocated
ALLOC_FUNC : Increase in PGA alloc mem by function

A_DIFF_RUN : PGA alloc mem runtime difference (since script start)

USER : DB username
REASON : Chunk allocation reason
FUNCTION : KGH memory allocation function

Script source: Christoph Lutz, Github Repository, Script kgh-alloc-by-reason.bt

Oracle KGH – Trace Analysis

$./kgh-plsql-analyze.sh <kgh_trc_log_file>

PID Sum Total PGA Alloc Sum Bind Alloc Sum Bind Pointer Alloc Bind + Bind Pointer
376402 150994944 150994944 0 150994944

377682 148897792 2097152 146800640 148897792

378123 153092096 153092096 0 153092096

380253 151060480 0 146800640 146800640

380641 150994944 113246208 37748736 150994944

380663 155189248 2097152 153092096 155189248

381090 155189248 142606336 12582912 155189248

381639 153288704 0 153092096 153092096

381984 153092096 0 153092096 153092096

382089 148897792 0 148897792 148897792

 We can write custom tools to summarize and aggregate the trace output

 The example above shows which PIDs have allocated the most "PL/SQL Collection Bind"
chunks during the measurement interval (top 10)

DEMO

Custom Tracing (bpftrace) – Summary

Who? What?

Record allocation of

every single chunk.

Time

Always on.

Capture all context

details.

Log changes over time.

Full history!

Case 3:
ACS, Bind Peeking and Plan Flips

Historical Context

Bind Variable Peeking

"Peek at" the bind variables during hard parse and compile a plan using the selectivities

of the "peeked" binds.

11g

9i

10g Stats Collection with Automatic Histogram Creation

Automatic gathering of histograms made bad situations caused by Bind Variable

Peeking even worse and much more unpredictable.

Adaptive Cursor Sharing (ACS)

Dynamically adapt execution plans at runtime based on the selectivity of values used in

bind variables.

This still happens with 19c!

Call from App Owner: We have a huuuuge performance problem!

DBA: Ah ok, do you have a timestamp to narrow it down?

App Owner: Ehm, it's constantly bad since yesterday evening!

DBA: Ehm, did you change something?

AppOwner: Äh, no – not to my knowledge …

DBA: Ok, let me check!

The Evergreen … (literally happens monthly)

...Extract

SQL> @aw 1=1

Showing top SQL and wait classes of last minute from ASH...

Total

Seconds AAS %This SQL_ID SESSION WAITCLASS FIRST_SEEN LAST_SEEN

--------- ------- ------- ------------- -------------------------------------- --------------- ------------------- -------------------

42 17.5 71% 846wumz55pycz WAITING User I/O 2024-07-02 09:59:09 2024-07-02 09:59:59

17 1.2 13% 6kfjvu1dfqr3x WAITING Concurrency 2024-07-02 09:59:10 2024-07-02 09:59:31

Spot On! 846wumz55pycz 17.5 active sessions on average in the last minute

Was there a plan flip?

...Extract

CDB1.PDB1 SQL> @awr/awr_sqlstats_per_exec 846wumz55pycz % sysdate-7 sysdate

BEGIN_INTERVAL_TIME SQL_ID PLAN_HASH_VALUE EXECUTIONS ELA_MS_PER_EXEC CPU_MS_PER_EXEC ROWS_PER_EXEC LIOS_PER_EXEC BLKRD_PER_EXEC

------------------- ------------- --------------- ---------- --------------- --------------- ------------- ------------- --------------

2024-06-30 17:56:22 846wumz55pycz 1176963889 141 1 0 1.0 37 0

2024-06-30 18:56:28 846wumz55pycz 1176963889 213 2 0 1.0 38 0

2024-07-01 19:56:25 846wumz55pycz 1176963889 75 1 0 1.0 37 0

2024-07-01 20:26:19 846wumz55pycz 1353868891 357 5804 5504 1.0 341220 341182
2024-07-01 21:26:45 846wumz55pycz 1353868891 101 5798 5409 1.0 344587 344553

2024-07-01 22:56:54 846wumz55pycz 1353868891 198 5643 5369 1.0 345987 345952

Plan flips here – from 1-2ms to almost 6sec per execution!

So, what's going on?

check the query, or rather the table(s) and predicates involved:

SQL> @sqlid 846wumz55pycz %

Show SQL text, child cursors and execution stats for SQLID 846wumz55pycz child %

HASH_VALUE PLAN_HASH_VALUE CH# SQL_TEXT

---------- --------------- ----- --

968766335 1353868891 0 select from SUBSCRIPTIONS ...join ... left outer join ... where A_ACCOUNTNUMBER = :1

The optimizer peeked a value which is not requested so often, and values in lower ranges which are requested

way more often, result in a bad plan.

Why did the Plan flip (assuming stats are fresh)?

check data distribution of the column in the where clause of the table being queried:

SQL> select * from (select A_ACCOUNTNUMBER, count(*) from SUBSCRIPTIONS group by A_ACCOUNTNUMBER order by 2 desc) where rownum <= 10;

A_ACCOUNTNUMBER COUNT(*)

------------------------------------ ----------

1683019842 162420

1955701227 106553

1140847506 17223

1502741410 3625 --from here

1684390416 2688

1575064115 2506

1167065059 1042

1501588712 1030

1448184576 970

1996574562 830 –-to here it's more or less within the same range(bucket) and above it jumps

check peeked binds:

SQL> @xia 846wumz55pycz %

Peeked Binds (identified by position):

1 - :1 (NUMBER): 1955701227

Ingredients for plan

flips given!

Chasing (Peeked) Binds

Parse Time

 DBMS_XPLAN option "+PEEKED BINDS" only shows the initial peeked bind value used on hard parse

Execution / Runtime:

 "Runtime bind values" can be found in:

• SQL Monitor Report, which is only created if db time of query >5 sec or query is using PX

• SQL Trace: full capture (needs to be enabled)

Bear in mind that V$SQL_BIND_CAPTURE only captures binds in the following situations:

 During a hard parse

 A soft parse that creates a new child cursor

 If the last captures was "_cursor_bind_capture_interval" seconds or longer ago (default: 900 sec)

 Column type is not "LONG" or "LOB"

CDB1.PDB1 SQL> select is_bind_aware,is_bind_sensitive from v$sql where sql_id='846wumz55pycz ';

IS_BIND_AWARE IS_BIND_SENSITIVE

------------- -----------------

N Y

Queries with bind variables in predicates are generally marked bind sensitive (depends on whether or not the bind variable is a collection).

 ACS might mark a query bind aware if bind variable values significantly affect the number of rows processed. Precon for this is parsing.

(In turn - if the application keeps the cursor open, the sql engine won't be able to generate a new child cursor for a better plan)

 A SQL is monitored, if certain criterias are given, the cursor will become "BIND_AWARE".

SQL> select sql_id,child_number,bucket_id,count from v$sql_cs_histogram where sql_id='846wumz55pycz';

SQL_ID CHILD_NUMBER BUCKET_ID COUNT

--------------------------------------- ------------ ---------- ----------

846wumz55pycz 1 0 3616

846wumz55pycz 1 1 36

846wumz55pycz 1 2 0

846wumz55pycz 0 0 2

846wumz55pycz 0 1 0

846wumz55pycz 0 2 0

Further down the Road...

Why is this SQL

not bind aware?

This view is used by the sql engine

to determine whether or not a

cursor is made bind aware

...but – the bucket threshold

calculations are a) undocumented

and b) dirty

Data Skew + Histograms + Bind Variables – What to do?!

1

0

100

1'000

10'000

1000'000

1 100 1'000 10'000 1'000'000

SELECT count(*) FROM t WHERE n1 = :n

- Query with bind variables

- Data skew

- Histograms

- Bad performance and users complain

- Data constellation in the future

- Future database design changes

- Future access patterns

You're facing a situation with … … and you have now clue about

This is first and foremost an application problem (not that anybody wants to hear that …)!

SELECT count(*) FROM t WHERE n = 1;

=> Index Range Scan

SELECT count(*) FROM t WHERE n = 1000000;

Full Table Scan

What can / should you do??

 Data skew, histograms and bind variables don't mix!

 We have very limited means at our disposal with which we can only address the "now" part of the
problem to some degree.

 Hotfixing this kind of situation is almost guaranteed to call for trouble further down the road
sometime in the future (the "later" part).

 Tactically, you may inject the BIND_AWARE hint with a SQL Patch into queries that are known to suffer
from poor or flipping plans (risk: this can lead to "high version count" issues) can't have it all...

 SQL Plan Management (SPM) / SQL Plan Baselines can also help but there is a pitfall you must be
aware of – otherwise you run the risk of making things even worse (s. next section)!

SQL> @create_sql_patch 846wumz55pycz BIND_AWARE

How do SPM and ACS interact with each other?

Bug 30771009 - Relax Restrictions On Disabling Adaptive Cursor

Sharing (ACS) With SQL Plan Management (SPM)

1

2

3

0

4

Bind-Aware cursor under

ACS/ECS control

a

Enabled and accepted

plan in SPM

SPM Automatic Plan Capture and ACS

Only the first plan is captured and ACCEPTED!

Additional Plans are added, but not ACCEPTED!
SELECT count(*)

FROM t

WHERE n1 = :n

First plan automatically captured with
optimizer_capture_sql_plan_baselines=TRUE

SPM Plan Selection and ACS

If a Baseline has only one accepted plan for a statement, then ACS is

automatically disabled for that statement!

b

c

ACCEPTED=YES

ACCEPTED=NO

ACCEPTED=NO

Cursor Cache

SQL Plan Baselines Restrictions:

Beware of Bug 30771009 - Relax Restrictions On Disabling Adaptive
Cursor Sharing (ACS) With SQL Plan Management (SPM)

SQL Containing More Than 8 Bind Variables is not Marked as Bind
Sensitive (Doc ID 1983132.1) fix control: 33627879

If a query is executed from within PL/SQL ACS might not work as
expected due to internal caching mechanos

If an application keeps a cursor open, ACS will not kick in, since it
requires parse calls

After sharing the findings with the application guys, they spotted that

the "top 3" accountnumbers were produced by their monitoring tool.

SQL> select * from (select A_ACCOUNTNUMBER, count(*) from SUBSCRIPTIONS group by A_ACCOUNTNUMBER order by 2 desc) where rownum <= 10;

A_ACCOUNTNUMBER COUNT(*)

------------------------------------ ----------

1683019842 162420

1955701227 106553

1140847506 17223

1502741410 3625

1684390416 2688

1575064115 2506

1167065059 1042

1501588712 1030

1448184576 970

1996574562 830

Hotfix: inject a sql patch with bind_aware hint to force adaptive cursor sharing.

Two weeks later: the 3 accountnumbers where deleted, we removed the patch and the plan stabilized.

"artificial" data leading to plan flip

Hold on – How did we fix the Problem?

Once you've migrated to Autonomous Cloud and enabled the underscore parameter

_ai_fix_all_my_problems=true

you will no longer have such issues!

Conclusion

Happy Troubleshooting!
Questions, feedback, comments?

We look forward to hearing from

you!

christoph.lutz@swisscom.com

@chris_skyflier
Symposium 42 | @sym_42

thomas.mayer@swisscom.com

References

References

Andrey Nikolaev, Latch internals, RUOUG Seminar, 2012-12-06

Brendan Gregg, Flame Graphs, 2020-10-31

Christoph Lutz, Oracle Github Repository, Script kgh-alloc-by-reason.bt

Christoph Lutz, Oracle Github Repository, Script kslgetl-shared-pool-stacks.bt

Mohamed Houri, Adaptive Cursor Sharing, Short answer to sharing cursors and optimizing SQL, 2015-11-28

Oracle Corp, SQL Plan Management in Oracle Database 19c, Whitepaper, 2019-03-13

Stefan Koehler, soocs-scripts Github Repository, Script dtrace_kghal_pga_code.sh

Tanel Poder, TPT Github Repository, Script ashtop.sql

Tanel Poder, TPT Github Repository, Script dashtop.sql

Tanel Poder, TPT Github Repository, Script latchprofx.sql

Tanel Poder, TPT Github Repository, Script trace kghal.sh

