
Building an
Effective AI

Multi-agent system

Grigorij Dudnik

We hired an AI junior dev

Naive agent
Tools:

File 1 File 2 File 3

File 4 File 5

System message

Naive agent
Tools:

File 1 File 2 File 3

File 4 File 5

System message

Tool Call: Garbage

Naive agent
Tools:

File 1 File 2 File 3

File 4 File 5

System message

Tool Call:

File 1

Garbage

Garbage

Naive agent
Tools:

File 1 File 2 File 3

File 4 File 5

System message

Tool Call:

File 1

Garbage

Garbage

Tool Call: Garbage

Naive agent
Tools:

File 1 File 2 File 3

File 4 File 5

System message

Tool Call:

File 1

Garbage

Garbage

Tool Call:

File 2

Garbage

Garbage

Naive agent
Tools:

File 1 File 2 File 3

File 4 File 5

System message

Tool Call:

File 1

Garbage

Garbage

Tool Call:

File 2

Garbage

Garbage

Tool Call: Garbage

Naive agent
Tools:

File 1 File 2 File 3

File 4 File 5

System message

Tool Call:

File 1

Garbage

Garbage

Tool Call:

File 2

Garbage

Garbage

Tool Call:

File 3

Garbage

Naive agent
Tools:

File 1 File 2 File 3

File 4 File 5

System message

Tool Call:

File 1

Garbage

Garbage

Tool Call:

File 2

Garbage

Garbage

Tool Call:

File 3

Garbage

File 3

Clean context is:

Context is a key

- Improved attention, which means better
quality of responses

- Lower costs
- Easier to debug

Context trade-off: agent informativeness vs performance

Researcher
Tools:

System message

Tool Call:

File 1

File 5

. . .
File 3

. . .

Researcher
Tools:

System message

Tool Call:

File 1

File 5

. . .

Planer
Tools:

System message

Plan

File 3

. . .

Researcher
Tools:

System message

Tool Call:

File 1

File 5

File 3

. . .

Executor
Tools:

Planer
Tools:

System message System message

Plan

File 3

. . .

Ok

File 5

Ok

Verbosity is
(another) key

Ability to see raw LLM input is crucial

Create a good tools

- Make it as simple as possible to use
(console vs dedicated tool)

- Replace code tool evolution
- Human acceptance needed for invasive

tools

- Automatic check of LLM input

File editing problem

File editing problem

File editing problem

Edit file

Ok

Edit file

Ok

System message

Auto refreshing context

Programming
tricks

- Autorefreshing of modified files in context
- Automatic log check
- Syntax check

- The more things done programmatically,
the better.

Make it think

-Use reasoning before every tool call
-XML or plain text for a reasoning; not
json

Proposing 3 different plans
and choosing the best

Manager
Tool list:

- Read tasks
- Create task
- Modify task
- Delete task
- Mark task as done
- Ask programmer to

execute task
- Ask tester to check

correctness of execution

Manager

-Reduce number of tools
-Concentrate agent attention on
single thing

Old tool list:
- Read tasks
- Create task
- Modify task
- Delete task
- Mark task as done
- Ask programmer to

execute task
- Ask tester to check

correctness of execution
+ Reorder tasks
+ Finish project planning

New tool list:
- Create task
- Modify task
- Delete task
- Reorder tasks
- Finish project planning

Single Task Scope

-Manager concentrated only on
creating good list of tasks

Key takeaways

Try it by yourself

-Create easy-to-use tools

-Shorten and clean the context

-Minimize scope of responsibilities

-Make it think

-Automate as much as possible

