

3 membership tiers

Connect: @oracleaceFacebook.com/OracleACEsaceprogram_ww@oracle.com

430+ technical experts

helping peers globally

The Oracle ACE Program recognizes and
rewards community members for their technical and community
contributions to the Oracle community

Nominate

yourself or someone you know:

ace.oracle.com/nominate
For more details on Oracle ACE Program:
ace.oracle.com

Oracle ACE Program Group

http://acenomination.oracle.com/
bit.ly/OracleACEProgram
bit.ly/OracleACEProgram

•

•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

Java also
available

•

•

Fruit, Animals or U.S.
States all nicely packed
together is an illustration
of an idealistic vision of
how vectors looks like

•

•

•

•

•

•

A tablescan would, of course, still be expensive and do far more work than needed. Ideally we need an

index to be able to find the rows that match all three equality predicates. However, we can see that

there are roughly 2 rows per value for item_key, so an index on just (item_key) might be good enough.

Averages, of course, can be very misleading: we might have one row for each of 3.5M values of

item_key and one value of item_key with 3.5M rows in our table, so we do need to know more about

the data distribution before we can make any solid suggestions.

https://jonathanlewis.wordpress.com/2024/08/07/indexing-4/

•

•

A tablescan would, of course, still be expensive and do far more work than needed. Ideally we need an

index to be able to find the rows that match all three equality predicates. However, we can see that

there are roughly 2 rows per value for item_key, so an index on just (item_key) might be good enough.

Averages, of course, can be very misleading: we might have one row for each of 3.5M values of

item_key and one value of item_key with 3.5M rows in our table, so we do need to know more about

the data distribution before we can make any solid suggestions.

https://jonathanlewis.wordpress.com/2024/08/07/indexing-4/

<h1>, <h2>, <h3>

•

begin
 dbms_vector.drop_onnx_model (
 model_name => 'ALL_MINILM_L12_V2',
 force => true);

 dbms_vector.load_onnx_model (
 directory => 'model_dir',
 file_name => 'all_MiniLM_L12_v2.onnx',
 model_name => 'ALL_MINILM_L12_V2');
end;
/

select
vector_embedding(all_minilm_l12_v2 using 'Quick test' as data) AS my_vector;

-- execute an embedding task for OCI GenAI
declare
 input clob;
 params clob;
 v vector;
begin
 dbms_output.put_line('Embedding task for OCI GenAI');
 input := 'Hello world';
 params := '
{
 "provider": "OCIGenAI",
 "credential_name": "CRED_OCI_GENAI",
 "url": "https://inference.generativeai.eu-frankfurt-1.oci...",
 "model": "cohere.embed-english-v3.0",
 "batch_size": 1
}';

 v := dbms_vector.utl_to_embedding(input, json(params));
 dbms_output.put_line(vector_serialize(v));
exception
 when OTHERS THEN
 DBMS_OUTPUT.PUT_LINE (SQLERRM);
 DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/

cohere.embed-
english-v3.0

VECTOR(1024, FLOAT64)

•

•

•

Read the documentation of
the model creator.
Then read the Oracle
documentation and see if
you find the same features.

meta.llama-3-70b-instruct v1.0

<|begin_of_text|>

<|start_header_id|>system<|end_header_id|> You are an expert at routing a user question to a vectorstore or

web search. Use the vectorstore for questions on Oracle, Oracle database, SQL, PL/SQL, query and

performance tuning. You do not need to be stringent with the keywords in the question related to these topics.

Otherwise, use web-search. Give a binary choice 'web_search' or 'vectorstore' based on the question. Return

the a JSON with a single key 'datasource' and no preamble or explanation.

Question to route: {question} <|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

For Llama you can see how the last part of the input is always to give the hand
back to the LLM to “speak” when using prompts with the proper tokens.

<|begin_of_text|>

<|start_header_id|>system<|end_header_id|> You are an Oracle Database assistant for question-answering

tasks.

Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that

you don't know.

Use three sentences maximum and keep the answer concise <|eot_id|>

<|start_header_id|>user<|end_header_id|>

Question: {question}

Context: {context}

Answer: <|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

<|begin_of_text|>

<|start_header_id|>system<|end_header_id|> You are a grader assessing whether

an answer is grounded in / supported by a set of facts. Give a binary 'yes' or 'no' score to indicate

whether the answer is grounded in / supported by a set of facts. Provide the binary score as a JSON with a

single key 'score' and no preamble or explanation. <|eot_id|>

<|start_header_id|>user<|end_header_id|> Here are the facts:

{documents}

Here is the answer: {generation} <|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

•

•

•

•

•

•

•

	Slide 1: Can the modern Frankenstein pass the Turing test?
	Slide 3: Gianni Ceresa
	Slide 4
	Slide 5: DISCLAIMER
	Slide 6: Can the modern Frankenstein pass the Turing test?
	Slide 7: ChatGPT
	Slide 8: A chatbot powered by LLM based on facts you provide
	Slide 9: RAG, one acronym, many ways: the very simple one
	Slide 10: RAG, one acronym, many ways: the improved simple one
	Slide 11: RAG, one acronym, many ways: the less simple but hopefully better
	Slide 12: Recipe for a ChatGPT-like chatbot for Oracle Database
	Slide 13: A quick look at Oracle OCI GenAI
	Slide 14: OCI GenAI
	Slide 15: OCI GenAI
	Slide 16: OCI GenAI: Embedding
	Slide 17: OCI GenAI: Embedding
	Slide 18: OCI GenAI
	Slide 19: OCI GenAI: Chat
	Slide 20: OCI GenAI: Chat
	Slide 21: OCI GenAI: Chat
	Slide 22: Let’s start! Everything begins with data
	Slide 23: OracleBaseGPT
	Slide 24: But before...
	Slide 25: Data: know your source
	Slide 26: Data: know your source
	Slide 27: Data: know your source
	Slide 28: Start by chunking
	Slide 29: Chunking: where the fun really starts...
	Slide 30: Chunking: where the fun really starts...
	Slide 31: Chunking: where the fun really starts...
	Slide 32: Chunking: where the fun really starts...
	Slide 33: Chunking: where the fun really starts...
	Slide 34: After chunking comes embedding, turning inputs into vectors
	Slide 35: Embedding in the database
	Slide 36: Embedding from the database using a webservice
	Slide 37: How I do chunking and embedding for OracleBaseGPT
	Slide 38: Chunking outside the database
	Slide 39: Embedding outside the database
	Slide 40: Chunks and vectors are inserted in Oracle Database 23ai
	Slide 41: Generate answers with a LLM
	Slide 42: LLMs are a bit like teaching to kids...
	Slide 43: LLMs are a bit like teaching to kids...
	Slide 44: Models have different prompt formats
	Slide 45: Models have different prompt formats
	Slide 46: Models can have special features like “documents”
	Slide 47: Models can have special features like “documents”
	Slide 48: OracleBaseGPT uses LLM for various tasks
	Slide 49: OracleBaseGPT: some prompts examples
	Slide 50: OracleBaseGPT: some prompts examples
	Slide 51: OracleBaseGPT: some prompts examples
	Slide 52: A lot can be done in the database 23ai No Python required. Can be enough for a number of requirements…
	Slide 53: Cleaning, Chunking and Embedding in the database
	Slide 54: HTML to text? Yes
	Slide 55: HTML to text? Yes
	Slide 56: Chunking? Yes
	Slide 57: Chunking? Yes
	Slide 58: Embedding? Yes
	Slide 59: All together? Yes
	Slide 60: OracleBaseGPT: demo
	Slide 61: OracleBaseGPT (demo)
	Slide 62: OracleBaseGPT (demo)
	Slide 63: OracleBaseGPT (demo)
	Slide 64: OracleBaseGPT (demo)
	Slide 65: OracleBaseGPT (demo)
	Slide 66: Building a custom ChatGPT-like chatbot

