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Java also 
available
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Fruit, Animals or U.S. 
States all nicely packed 
together is an illustration 
of an idealistic vision of 
how vectors looks like
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A tablescan would, of course, still be expensive and do far more work than needed. Ideally we need an 

index to be able to find the rows that match all three equality predicates. However, we can see that 

there are roughly 2 rows per value for item_key, so an index on just (item_key) might be good enough. 

Averages, of course, can be very misleading: we might have one row for each of 3.5M values of 

item_key and one value of item_key with 3.5M rows in our table, so we do need to know more about 

the data distribution before we can make any solid suggestions.

https://jonathanlewis.wordpress.com/2024/08/07/indexing-4/
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begin
  dbms_vector.drop_onnx_model (
    model_name => 'ALL_MINILM_L12_V2',
    force => true);

  dbms_vector.load_onnx_model (
    directory  => 'model_dir',
    file_name  => 'all_MiniLM_L12_v2.onnx',
    model_name => 'ALL_MINILM_L12_V2');
end;
/

select 
vector_embedding(all_minilm_l12_v2 using 'Quick test' as data) AS my_vector;



-- execute an embedding task for OCI GenAI
declare
  input clob;
  params clob;
  v vector;
begin
  dbms_output.put_line('Embedding task for OCI GenAI');
  input := 'Hello world';
  params := '
{
  "provider": "OCIGenAI", 
  "credential_name": "CRED_OCI_GENAI",
  "url": "https://inference.generativeai.eu-frankfurt-1.oci...",
  "model": "cohere.embed-english-v3.0",
  "batch_size": 1
}';

  v := dbms_vector.utl_to_embedding(input, json(params));
  dbms_output.put_line(vector_serialize(v));
exception
  when OTHERS THEN
    DBMS_OUTPUT.PUT_LINE (SQLERRM);
    DBMS_OUTPUT.PUT_LINE (SQLCODE);
end;
/







cohere.embed-
english-v3.0



VECTOR(1024, FLOAT64)
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Read the documentation of 
the model creator.
Then read the Oracle 
documentation and see if 
you find the same features.



meta.llama-3-70b-instruct v1.0



<|begin_of_text|>

<|start_header_id|>system<|end_header_id|> You are an expert at routing a user question to a vectorstore or 

web search. Use the vectorstore for questions on Oracle, Oracle database, SQL, PL/SQL, query and 

performance tuning. You do not need to be stringent with the keywords in the question related to these topics. 

Otherwise, use web-search. Give a binary choice 'web_search' or 'vectorstore' based on the question. Return 

the a JSON with a single key 'datasource' and no preamble or explanation. 

Question to route: {question} <|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

For Llama you can see how the last part of the input is always to give the hand 
back to the LLM to “speak” when using prompts with the proper tokens.



<|begin_of_text|>

<|start_header_id|>system<|end_header_id|> You are an Oracle Database assistant for question-answering 

tasks. 

Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that 

you don't know. 

Use three sentences maximum and keep the answer concise <|eot_id|>

<|start_header_id|>user<|end_header_id|>

Question: {question} 

Context: {context} 

Answer: <|eot_id|>

<|start_header_id|>assistant<|end_header_id|>



<|begin_of_text|>

<|start_header_id|>system<|end_header_id|> You are a grader assessing whether 

an answer is grounded in / supported by a set of facts. Give a binary 'yes' or 'no' score to indicate 

whether the answer is grounded in / supported by a set of facts. Provide the binary score as a JSON with a 

single key 'score' and no preamble or explanation. <|eot_id|>

<|start_header_id|>user<|end_header_id|> Here are the facts:

 ------- 

{documents} 

 ------- 

Here is the answer: {generation}  <|eot_id|>

<|start_header_id|>assistant<|end_header_id|>
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