
Connection Strings Demystified
A Deep Dive into Network
Timeouts and TNS Internals

SOUG Day 1/2024
2024-04-17
Christoph Lutz

Oracle SQLNet Timeouts …

TRANSPORT_CONNECT_TIMEOUT

CONNECT_TIMEOUT SQLNET.INBOUND_CONNECT_TIMEOUT

INBOUND_CONNECT_TIMEOUT_listener_name

SQLNET.OUTBOUND_CONNECT_TIMEOUT

SQ
LN

ET.RECV_TIM
EO

U
T

SQLNET.DOWN_HOSTS_TIMEOUT

SQ
LN

ET.SEN
D_TIM

EO
U

T

TCP.CONNECT_TIMEOUT

N
AM

ES
.L

DA
P_

CO
N

N
_T

IM
EO

U
T

TNS Connection Strings – How do the Timeouts and Options Work?

MY_TEST.WORLD =
(DESCRIPTION =
(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521))
)
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521))
)
(CONNECT_DATA =

(SERVICE_NAME = MY_TEST_RW.WORLD)
)

)

How do these timeouts really
work?

Is there anything special
about ADDRESS_LISTs?

Are these timeouts
cumulative or not?

Are they for SCAN and
node listeners?

A Word of Caution

This presentation covers low-level internal and undocumented behavior.

This means:

 Things can and will change across different versions and patch levels

 My observations, findings and interpretations may be inaccurate or wrong

 Use the techniques shown in this presentation at your own risk!

 All examples were tested with Oracle 19.20 on OEL 8.8, other versions may differ!

MAA Architecture – The Big Picture

Primary

SCAN1 SCAN2 SCAN3

Local VIP
Listener

Local VIP
Listener

Node 2

O
N

S O
N

S

Node 1

Database

OID / LDAP

DNS

Client

Standby

SCAN1 SCAN2 SCAN3

Local VIP
Listener

Local VIP
Listener

Node 2
O

N
S O

N
S

Node 1

dns1

oid1

dns2

oid2

Lookup oid
server

Lookup tns
descriptor

Lookup
SCAN

TNS
Redirect

Lookup
node vip

Subscribe
to ons

Subscribe
to ons

Oracle architectures can be even
more complex and include add-
itional components like
- Connection Manager (CMAN)
- Centrally Managed Users (CMU)

DNS Quirks & Oddities

DNS Lookups – How Many Requests Will We Get?

- my-scan01: 6 lookups
- my-scan02: 2 lookups
- (db node : 2 lookups)

There are various reasons for this that will
be explained in the following slides.

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521))
(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521))

(CONNECT_DATA =
(SERVICE_NAME = MY_TEST_RW.WORLD)

)
)

Example Connection String

a) One Lookup?
b) Two Lookups?
c) Three Lookups
d) More than three lookups?
e) It depends… on what?!

/etc/resolv.conf

options attempts:2
options timeout:4
…
nameserver 1.2.3.4
nameserver 4.3.2.1

Answer

It depends!
(either 8 or 10)

How To Analyze DNS Lookup Requests?

1. Tcpdump

2. Wireshark / Tshark

tcpdump --immediate-mode -i any -nn -v host "(my-scan01 or my-scan02) and udp and port 53"

tshark -i any \
-n \
-l \
-T fields \
-e dns.qry.name -f 'src port 53' \
-Y 'dns.qry.name contains "my-scan01" or \

dns.qry.name contains "my-scan02"'

We'll use this filter to
analyze the behavior of
SCAN lookups.

DEMO

DNS Oddity #1

21:44:35.416008 xxx.xxx.xxx.xxx.19371 > 1.2.3.4.53: 16347+ A? my-scan01.mydomain.net. (42)

21:44:35.416029 xxx.xxx.xxx.xxx.19371 > 1.2.3.4.53: 38111+ AAAA? my-scan01.mydomain.net. (42)

21:44:35.420833 xxx.xxx.xxx.xxx.14217 > 4.3.2.1.53: 18490+ A? my-scan01.mydomain.net. (42)

21:44:35.420838 xxx.xxx.xxx.xxx.14217 > 4.3.2.1.53: 56612+ AAAA? my-scan01.mydomain.net. (42)

21:44:35.425665 xxx.xxx.xxx.xxx.46735 > 1.2.3.4.53: 11703+ A? my-scan02.mydomain.net. (42)

21:44:35.425671 xxx.xxx.xxx.xxx.46735 > 1.2.3.4.53: 44214+ AAAA? my-scan02.mydomain.net. (42)

21:44:35.661922 xxx.xxx.xxx.xxx.15511 > 4.3.2.1.53: 65229+ A? my-scan01.mydomain.net. (42)

21:44:35.661939 xxx.xxx.xxx.xxx.15511 > 4.3.2.1.53: 30144+ AAAA? my-scan01.mydomain.net. (42)

The Oracle client performs IPv4 and IPv6 DNS lookups. Why this?!

The output shows an
interesting pattern and
behavior, can you spot it?

Example Output

DNS Oddity #1 – Dual Stack IPv4 and IPv6 Lookups

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr* ai_addr;
char* ai_canonname;
struct addrinfo* ai_next;

};

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

ai_family:
Specifies the desired address family.

Valid field values:

- AF_INET (IPv4)
- AF_INET6 (IPv6)
- AF_UNSPEC (any)

AF_UNSPEC indicates that getaddrinfo()
should return socket addresses for any
address family (either IPv4 or IPv6).

The getaddrinfo behavior is driven by the flags set in the application.
Disabling the OS IPv6 network stack (ipv6.disable=1) makes no difference!

getaddrInfo:

getaddrinfo is a standard libc function that
converts domain names, hostnames and IP
addresses between human-readable text
representations and structured binary
formats for the Linux socket API.

See also "man getaddrinfo".

DNS Oddity #1 – Oracle Client getaddrinfo Options

Oracle Client getaddrinfo Options

ai_family

The Oracle client uses AI_UNSPEC by
default and this is the reason why it
performs dual-stack dns lookups.

BPF Tracing Script using uprobes

./snlinGetAddrInfo <pid>

-> snlinGetAddrInfo
-> getaddrinfo

host: my-scan01.mydomain.net
hints:

ai_flags=2
AI_CANONNAME

ai_family=0
AF_UNSPEC

<- getaddrinfo: 0
<- snlinGetAddrInfo: 0

Default
-> snlinGetAddrInfo

-> getaddrinfo
host: my-scan01.mydomain.net
hints:

ai_flags=2
AI_CANONNAME

ai_family=2
AF_INET

<- getaddrinfo: 0
<- snlinGetAddrInfo: 0

IP=V4_ONLY

The Oracle client uses
ai_family=AF_UNSPEC by
default and this results in
dual-stack DNS lookups!

When the TNS IP=V4_ONLY
clause is used, Oracle uses the
AF_INET flag, which results in
IPv4 lookups only.

DNS Oddity #1 – IP=V4_ONLY Option

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS =
(PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521)(IP=V4_ONLY))

(ADDRESS =
(PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521)(IP=V4_ONLY))

(CONNECT_DATA =
(SERVICE_NAME = MY_TEST_RW.WORLD)

)
)

IP=V4_ONLY

The connection string on the left will
result in a total of four DNS lookups:

- my-scan01: 3 lookups
- my-scan02: 1 lookups

DEMO

DNS Oddity #2

21:44:35.416008 xxx.xxx.xxx.xxx.19371 > 1.2.3.4.53: 16347+ A? my-scan01.mydomain.net. (42)

21:44:35.416029 xxx.xxx.xxx.xxx.19371 > 1.2.3.4.53: 38111+ AAAA? my-scan01.mydomain.net. (42)

21:44:35.420833 xxx.xxx.xxx.xxx.14217 > 4.3.2.1.53: 18490+ A? my-scan01.mydomain.net. (42)

21:44:35.420838 xxx.xxx.xxx.xxx.14217 > 4.3.2.1.53: 56612+ AAAA? my-scan01.mydomain.net. (42)

21:44:35.425665 xxx.xxx.xxx.xxx.46735 > 1.2.3.4.53: 11703+ A? my-scan02.mydomain.net. (42)

21:44:35.425671 xxx.xxx.xxx.xxx.46735 > 1.2.3.4.53: 44214+ AAAA? my-scan02.mydomain.net. (42)

21:44:35.661922 xxx.xxx.xxx.xxx.15511 > 4.3.2.1.53: 65229+ A? my-scan01.mydomain.net. (42)

21:44:35.661939 xxx.xxx.xxx.xxx.15511 > 4.3.2.1.53: 30144+ AAAA? my-scan01.mydomain.net. (42)

Even without IPv6 lookups
we still observe more
lookups than expected!

Example Output

Even without IPv6 lookups there are still 4 lookups. How come?!

DNS Oddity #2 – Oracle snlinGetAddrInfo Function

snlinGetAddrInfo:

System Networking Linux getaddrinfo

snlinGetAddrInfo seems to be a wrapper
around the libc getaddrinfo function.

Source: My Oracle Support, Reducing Client Connection Delays When DNS Is Unresponsive (Doc ID 1449843.1)

MOS Doc ID 1449843.1 mentions something very interesting:

DNS requests to resolve the scan name are made by the Oracle
Net function snlinGetAddrInfo.

When an ADDRESS_LIST is not used in the connect descriptor,
snlinGetAddrInfo invokes two separate DNS queries during the
connection process.
…
When ADDRESS_LIST syntax is used snlinGetAddrInfo will make
only one query.

The client's DNS lookup behavior changes with an
ADDRESS_LIST but the reason for this is unknown!

How To Make DNS Behave As Expected?

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS_LIST =
(ADDRESS =

(PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521)(IP=V4_ONLY))
)
(ADDRESS_LIST =
(ADDRESS =

(PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521)(IP=V4_ONLY))
)
(CONNECT_DATA =
(SERVICE_NAME = MY_TEST_RW.WORLD)

)
)

The connection string on the left will
result in a total of two DNS lookups:

- my-scan01: 1 lookup
- my-scan02: 1 lookup

Only these settings result in the behavior we would expect!

DEMO

DNS – Expected Behavior

21:44:35.416008 xxx.xxx.xxx.xxx.19371 > 1.2.3.4.53: 16347+ A? my-scan01.mydomain.net. (42)

21:44:35.416029 xxx.xxx.xxx.xxx.19371 > 1.2.3.4.53: 38111+ AAAA? my-scan01.mydomain.net. (42)

21:44:35.420833 xxx.xxx.xxx.xxx.14217 > 4.3.2.1.53: 18490+ A? my-scan01.mydomain.net. (42)

21:44:35.420838 xxx.xxx.xxx.xxx.14217 > 4.3.2.1.53: 56612+ AAAA? my-scan01.mydomain.net. (42)

21:44:35.425665 xxx.xxx.xxx.xxx.46735 > 1.2.3.4.53: 11703+ A? my-scan02.mydomain.net. (42)

21:44:35.425671 xxx.xxx.xxx.xxx.46735 > 1.2.3.4.53: 44214+ AAAA? my-scan02.mydomain.net. (42)

21:44:35.661922 xxx.xxx.xxx.xxx.15511 > 4.3.2.1.53: 65229+ A? my-scan01.mydomain.net. (42)

21:44:35.661939 xxx.xxx.xxx.xxx.15511 > 4.3.2.1.53: 30144+ AAAA? my-scan01.mydomain.net. (42)

Example Output

ADDRESS_LIST and IP=V4_ONLY give the expected results

DNS Oddities – Summary

No ADDRESS_LIST, no IP=V4_ONLY

3. SCAN expansion my-scan01 IPv4

2. lookup my-scan01 IPv6

4. SCAN expansion my-scan01 IPv6

5. SCAN expansion my-scan02 IPv4

6. SCAN expansion my-scan02 IPv6

7. lookup my-scan02 IPv4

8. lookup my-scan02 IPv6

1. lookup my-scan01 IPv4

9. [lookup dbhost01-v IPv4]

10. [lookup dbhost01-v IPv6]

IP=V4_ONLY

3. SCAN expansion my-scan01 IPv4

5. SCAN expansion my-scan02 IPv4

7. lookup my-scan02 IPv4

1. lookup my-scan01 IPv4

9. [lookup dbhost01-v IPv4]

ADDRESS_LIST and IP=V4_ONLY

3. SCAN expansion my-scan01 IPv4

5. SCAN expansion my-scan02 IPv4

9. [lookup dbhost01-v IPv4]

These lookups only occur when a
hostname is used in the
LOCAL_LISTENER setting.

TCP Timeouts – New Connections

TCP Timeouts – New Connections

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521))

)
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521))
)
(CONNECT_DATA =

(SERVICE_NAME = TEST_SERVICE_RW.WORLD)
)

)
)

This section is about
this setting!

TCP Connection Establishment – Three-Way Handshake

Client Server

Now the TCP connection is
ESTABLISHED.

Sequence Numbers

All bytes in a TCP connection are num-
bered with a sequence number and the
initial sequence number (ISN) is rand-
omly chosen.

The sequence number is the byte number
of the first byte of data in the TCP packet
sent (also called a TCP segment).

Acknowledgment Numbers

The acknowledgement number is the
sequence number of the next byte the
receiver expects to receive.

Acknowledgment of sequence number
<n> means the receiver acknowledges the
receipt of all bytes less than (not
including) byte number <n>.

TCP Packet Loss – Initial RTO Problem Scenarios

From a client's perspective, there is no
difference between SYN and SYN/ACK loss
when a new connection is initiated.

How should a client handle this kind of
situation?

=> Retransmit the SYN after an initial
Retransmit Timeout (RTO)

How do different operating systems
handle this kind of situation?

- Linux: 1 sec Initial RTO
- Windows: 1 sec initial RTO

Client Server Client Server

SYN gets lost SYN/ACK gets lost

TCP Packet Loss – Initial Retransmit Timeout (RTO)
On Linux, the initial RTO is 1 sec* and the
max number of SYN retries is de-fined by
the following tunable that defaults to 6 on
OEL 8:

net.ipv4.tcp_syn_retries

Linux uses an exponential backoff algo-
rithm that doubles the timeout on every
retransmission.

With an initial RTO of 1 sec and 6 re-tries,
the timeout is:

1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 sec

Or, more generally:

timeout = 2 ^ (tcp_syn_retries + 1) - 1

* Defined by kernel macro TCP_TIMEOUT_INIT in
include/net/tcp.h:

#define TCP_TIMEOUT_INIT
((unsigned)(1*HZ))

Client Server

1 sec

2 sec

4 sec

8 sec
and so on …

Blocking vs Non-Blocking Sockets

connect()

Kernel
Appli-
cation

X

X

SYN

SYN

sleep

sleep

XSYN

sleep

1 sec (initial RTO)

Peer

2 sec

… 64 sec

ETIMEDOUT

connect
failure

127 sec

connect()
blocked

connect() O_NONBLOCK

Kernel
Appli-
cation

X

X

SYN

SYN

sleep

sleep

1 sec (initial RTO)

Peer

2 sec

connect
failure

poll()
wait for "socket-ready"
event

EINPROGRESS

wakeup (timeout)

3 sec

With non-blocking sockets,
the connect fails after the
poll timeout has expired
(3 sec in this example).

With blocking sockets, the
connect fails after the OS-
specific TCP timeout has
expired (127 sec on Linux).

Blocking Socket Non-Blocking Socket

ETIMEDOUT

TRANSPORT_CONNECT_TIMEOUT

TRANSPORT_CONNECT_TIMEOUT

The TRANSPORT_CONNECT_TIMEOUT is
the maximum time the Oracle client waits
for a socket to become ready.

With OCI based clients on Linux, Oracle
uses the poll() system call, so loosely
speaking, the transport connect timeout
is the poll timeout.

Implementations in other clients, li-
braries (JDBC, ODP.NET) and operating
systems may vary and may use differ-ent
mechanisms (like timer threads).

strace -e trace=fcntl,socket,connect,poll -p <sqlplus_pid>

…
fcntl(9, F_SETFL, O_RDONLY|O_NONBLOCK) = 0

connect(9, {sa_family=AF_INET, sin_port=htons(1521),
sin_addr=inet_addr("xxx.xxx.xxx.xxx")}, 16) = -1 EINPROGRESS

(Operation now in progress)

poll([{fd=9, events=POLLOUT}], 1, 4000) = 1 ([{fd=9, revents=POLLOUT}])
…

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)
…

The TRANSPORT_CONNECT_TIMEOUT
defines the time poll() should block.

Connection String

System Calls (strace)

The timeout value used by poll() can be different from the Transport Connect Timeout due to processing
delays or timer granularity effects! Refer to Appendix C for further details.

Transport Connect Timeout and TCP Initial RTO

Transport Connect Timeout & TCP RTO

If the TRANSPORT_CONNECT_TIMEOUT
expires before the initial TCP RTO had a
chance to "recover" from a packet loss, the
client will give up and cancel the connection
attempt even though a TCP connection may
have been established shortly after a
successful retransmit.

Setting TRANSPORT_CONNECT_TIMEOUT to
a value greater than the initial RTO on the
OS side, will give a client more head-room
to recover from processing delay situations
(which may occur during tem-porary load
bursts on the network or on the server
side).

Of course, the ideal setting depends on the
TCP defaults of the client and how
gracefully it can handle packet loss errors.

Use a Transport Connect Timeout with some headroom to recover from packet loss!

OS

t
1 sec 3 sec

SYN1 SYN2 SYN3

TRANSPORT_CONNECT_TIMEOUT=4

Transport Connect Timeout
expires AFTER the OS has
managed to recover from
SYN loss.

X X

0 sec

SYN loss recovered

X
OS

t
1 sec 3 sec

SYN1 SYN2

TRANSPORT_CONNECT_TIMEOUT=2

Transport Connect Timeout
expires BEFORE the OS has
managed to recover from SYN
loss.

X

0 sec

TCT expired before
SYN loss recovered!

Transport Connect Timeout and Connect Timeout

Connect Timeouts

The CONNECT_TIMEOUT is a superset of the
TRANSPORT_CONNECT_TIMEOUT.

That means, the CONNECT_TIMEOUT
defines the time interval between the start
of a new connection request until a
database session is open.

If the establishment of a new TCP con-
nection incurs a delay, the delay time is
subtracted from the CONNECT_TIMEOUT. In
other words, network delays during
connection establishment, reduce the max
CONNECT_TIME interval.

t
t1 t2t0

Connection
Start

TCP
ESTABLISHED

Session
Open

CONNECT_TIMEOUT=9

Actual
TCT=1

Max CT Interval=8

CONNECT_TIMEOUT is a superset of the TRANSPORT_CONNECT_TIMEOUT

 TCT = Transport Connect Time
 CT = Connect Time

CONNECT_TIMEOUT is a superset of
TRANSPORT_CONNECT_TIMEOUT.
It is the time interval between the
start of a new connection until a db
session is open.

t
t1 t2t0

Connection
Start

TCP
ESTABLISHED

Session
Open

CONNECT_TIMEOUT=9

Actual
TCT=5

Max CT Interval=4 TCT = Transport Connect Time
 CT = Connect Time

Example 02

Example 01

Connect Timeout < Transport Connect Timeout

Connect Timeout < Transport Connect TO

When the Connect Timeout value is set
lower than the Transport Connect Time-out
value, Oracle will silently cap and adjust the
Transport Connect Timeout value at run-
time, so that:

Transport Connect TO = Connect Timeout

t

CONNECT_TIMEOUT=4

Configured TRANSPORT_CONNECT_TIMEOUT=8

Adjusted TRANSPORT_CONNECT_TIMEOUT=4

MY_TEST.WORLD =
(DESCRIPTION =

(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=8)(CONNECT_TIMEOUT=4)(ENABLE=BROKEN)
…

Connection String

X

Transport Connect Timeout not Specified

Transport Connect Timeout not set

When the Transport Connect Timeout is not
set, Oracle implicitly sets ist value to the
value of the Connect Timeout:

Transport Connect TO = Connect Timeout

t

CONNECT_TIMEOUT=9

(Implicit TRANSPORT_CONNECT_TIMEOUT=9)

MY_TEST.WORLD =
(DESCRIPTION =

(FAILOVER=ON)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)
…

Connection String

SCAN and Node Listener Timeouts

Transport Connect Timeout &
Connect Timeout

The Oracle client opens new connections for
connecting to the SCAN listener and the
node listener.

The Transport Connect Timeout and the
Connect Timeout settings therefore apply to
every connection separately; that is, Oracle
starts a new timeout before open-ing a
connection to either a SCAN or a node
listener.

Moreover, the client internally expands the
SCAN and constructs an ADDRESS entry for
every SCAN IP. If a connection attempt
results in a timeout, the client will retry
and iterate over all SCAN IPs of all
ADDRESS_LIST clauses (s. also Appendix B,
slides SCAN Host Expansion and Connection
Attempts and Retries).

t
t1 t2t0

Connection
Start

TCP
ESTABLISHED

TNS
Redirect

CONNECT_TIMEOUT

TCT

t4 t5t3

Connection
Start

TCP
ESTABLISHED

Session
Open

CONNECT_TIMEOUT

TCT

1. SCAN Listener Connection 2. Node Listener Connection

The timeouts apply on a per-connection basis. So, there are separate time-
outs for the connection to the SCAN and the node listener.

TCP Backlog Queue – Listener QUEUESIZE

Listener QUEUESIZE

The size of the listener's TCP backlog queue is
defined by the QUEUESIZE parameter and
defaults to 128 on Linux.

This default may not be enough in the
following situations:

- Connection bursts
- High system load

When the TCP backlog queue fills up faster
than the listener can complete accept() calls,
the backlog queue will eventually overrun
and SYN requests get dropped and silently
ignored!

In such a situation, clients will retransmit
their SYN requests.

For further information on how to configure
the TCP backlog queue, refer to TCP Backlog
Queue – Details in Appendix B

SYN Queue

Accept
Queue

Listener
accept()

X X X

In consolidated environments, it's highly recommended to increase the listener's
default QUEUESIZE (to 1024 or higher).

Note: for SCAN listeners you must use the TCP.QUEUESIZE parameter in sqlnet.ora!

When the backlog
queue overruns, SYN
packets are silently
dropped!

TCP Backlog Queue – Listener Rate Limit

Listener Rate Limit

The listener rate limit can protect from
getting overloaded because of sudden
connection bursts.

When a listener rate limit is active and the
maximum number of concurrent connec-tions
per second has been reached, the lis-tener
will no longer call accept() to process new
connections. New connections will therefore
be queued in the listener's backlog queue.

So, when enforcing a listener rate limit, also
consider increasing the listener's QUEUESIZE.

However, there's a limit to everything. While
a system may be able to queue thousands of
connection requests in the TCP backlog
queue, it may not be able to process those
requests fast enough (that is, before the
client timeouts expire)!

SYN Queue

Accept
Queue

Listener
accept()

X X X

listener.ora:

CONNECTION_RATE_LISTENER=50

LISTENER=
(ADDRESS=

(PROTOCOL=TCP)
(HOST=mydbhost)(PORT=1521)(RATE_LIMIT=yes)

)

The Rate Limit feature throttles the rate at which the listener accepts and
processes new connections.

This will increase backpressure on the TCP backlog queue.

With rate limiting, you should also consider increasing the TCP backlog queue
size!

RATE_LIMIT

Listener QUEUESIZE 128 (Default)

@backlog[xxx.xxx.xxx.xxx, 1521, 128]:
[0] 3 |@@ |
[1] 1 | |
[2, 4) 3 |@@ |
[4, 8) 7 |@@@@@@ |
[8, 16) 18 |@@@@@@@@@@@@@@@@@ |
[16, 32) 19 |@@@@@@@@@@@@@@@@@@ |
[32, 64) 53 |@@|
[64, 128) 21 |@@@@@@@@@@@@@@@@@@@@ |

11:20:12 Dropping a SYN to xxx.xxx.xxx.xxx :1521
11:20:12 Dropping a SYN to xxx.xxx.xxx.xxx :1521
11:20:12 Dropping a SYN to xxx.xxx.xxx.xxx :1521
…

Listener QUEUESIZE 1024

@backlog[xxx.xxx.xxx.xxx, 1521, 1024]:
[0] 13 |@@@@@@@@ |
[1] 5 |@@@ |
[2, 4) 2 |@ |
[4, 8) 8 |@@@@@ |
[8, 16) 11 |@@@@@@@ |
[16, 32) 21 |@@@@@@@@@@@@@@ |
[32, 64) 48 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[64, 128) 77 |@@|
[128, 256) 73 |@@@ |

TCP Backlog Queue – Monitoring (tcpsynbl.bt)

How to monitor the TCP Backlog Queue?

With conventional tools, the utilization of
the TCP backlog queue can only be
monitored system-wide and not on a per-
socket basis.

To monitor the TCP backlog queue on a
per-socket based, use the BPF based
tcpsynbl.bt script (or the slightly enhanced
tcpsynbl2.bt script).

TCP backlog queue
is full, requests are
getting dropped!

TCP backlog queue
is adequately sized.

DEMO

Request Processing Cost – Listener Only

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
75.99 0.000861 861 1 wait4
3.44 0.000039 9 4 epoll_wait
3.27 0.000037 2 14 1 read
2.65 0.000030 3 10 times
2.12 0.000024 4 6 epoll_ctl
1.50 0.000017 2 6 write
1.50 0.000017 17 1 rt_sigaction
1.50 0.000017 1 10 fcntl
1.41 0.000016 16 1 accept
1.32 0.000015 1 9 close
1.15 0.000013 2 5 lstat
1.06 0.000012 3 4 openat
0.71 0.000008 4 2 getsockname
0.62 0.000007 1 4 stat
0.53 0.000006 3 2 setsockopt
0.53 0.000006 3 2 getsockopt
0.26 0.000003 3 1 1 getpeername
0.18 0.000002 2 1 lseek
0.09 0.000001 0 2 getpid
0.09 0.000001 0 2 geteuid
0.09 0.000001 1 1 gettid
0.00 0.000000 0 2 pipe
0.00 0.000000 0 1 clone

------ ----------- ----------- --------- --------- ----------------
100.00 0.001133 12 91 2 total

strace -c -p <listener_pid> Listener Request Processing

Listener request processing is relatively
light-weight and incurs a very moderate
system call footprint.

Request Processing Cost – Listener + FG Process

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ------------------
51.23 0.013822 30 454 2 read
8.77 0.002366 10 223 mmap
7.27 0.001962 1962 1 restart_syscall
7.02 0.001894 5 371 112 openat
3.53 0.000952 8 108 mprotect
2.92 0.000787 2 272 close
2.08 0.000562 9 59 7 ioctl
1.83 0.000494 247 2 clone
1.73 0.000467 3 132 21 stat
1.56 0.000420 420 1 wait4
1.05 0.000282 3 79 30 recvmsg
1.01 0.000272 2 113 fstat
0.86 0.000231 1 116 lseek
0.79 0.000213 2 94 geteuid
0.70 0.000190 4 41 sendmsg
0.62 0.000166 3 49 poll
0.50 0.000134 3 35 write
0.43 0.000117 6 19 12 access
0.42 0.000114 1 67 fcntl
0.42 0.000113 2 41 rt_sigaction
0.39 0.000106 1 63 getpid
0.31 0.000083 1 45 rt_sigprocmask
0.27 0.000074 8 9 madvise
0.26 0.000069 3 22 brk
0.23 0.000063 3 18 1 lstat
0.23 0.000062 8 7 epoll_wait
0.23 0.000062 3 17 epoll_ctl
[…]

------ ----------- ----------- --------- --------- ------------------
100.00 0.026980 9 2753 204 total

Spawning Dedicated Server Processes

Spawning a new dedicated FG process is a
very expensive operation that incurs
thousands of system calls!

If any of those system calls gets slowed
down or delayed, the client may run into a
connect timeout, which may look like a
"network problem" at first glance even
though the root cause could be something
completely different!

If you open and close a new connection
on every request, you're doing it wrong –
completely wrong! This is a recipe for
disaster!

This can add up to a lot of
unecessary work. Note that
the number of system calls can
vary across different releases
(output from 19.20)

strace -c –f -p <listener_pid>

Connection & Logon Storms – Vicious Circle

Vicious Circle

Applications that spawn new con-nections
to "compensate" for slowness can bring a
system to its knees!

Requests are
going slow(er)

Logon and process-
ing delays, con-
nections may fail

Application
opens new con-
nections to "com-
pensate" for slow-
ness and failures

System incurs more
load & contention

Connection & Logon Storms – Active Sessions

Connection & Logon Storms

With connection pools, Oracle recom-
mends 1-10 connections per CPU core!

Moreover, the Oracle Real-World Perfor-
mance group recommends creating a static
pool of connections to the data-base by
setting the minimum and maximum number
of connections to the same value.

This prevents connection storms by keeping
the number of database connections
constant to a predefined value.

Source: Oracle 21, Universal Connection Pool Developer's
Guide, Section: About Optimizing Real-World Performance
with Static Connection Pools

13 14 23 12 9 14 19 18 1052

681

1453 1473

804

106 143 181
79

0

200

400

600

800

1000

1200

1400

1600

16-MAY-22
12.12.07

16-MAY-22
12.12.18

16-MAY-22
12.12.28

16-MAY-22
12.12.38

16-MAY-22
12.12.48

16-MAY-22
12.12.59

16-MAY-22
12.13.19

16-MAY-22
12.13.29

16-MAY-22
12.13.40

16-MAY-22
12.13.50

Nr of Active Sessions

On CPU

resmgr:cpu quantum

Without Resource
Manager, this system
would have become
inaccessible.

With Resource Man-
ager, only the appli-
cation became inac-
cessible … :-)

The Listener Rate Limiter feature (RATE_LIMIT) will only help in situations when lots
of NEW connections are getting opened.

It will not help against existing database sessions (from a connection pool) that are
already open and idle and that suddenly become all active at the same time!

Connection & Logon Storms – Micro Services

If you split your application into multiple micro-services, you should split
your connection pool into multiple "micro-pools" as well!

Monolith Micro Services

n x 100 Connections =
Oversubscription!

M

CP

MS

CP

MS MS MS

CPCP CP

100 Connections

CPU Oversubscription

If an application is split into multiple micro
services, make sure that the total number of
all active connections / active sessions across
all services does not result in a CPU
oversubscription on the database system.

CPU oversubscription leads to significant
performance problems and can even result
in system crashes or node evictions!

The database resource manager (dbrm) can
be used to protect the system from getting
overloaded, but may not help to protect
application users from getting bad
performance and response times.

Recommendations:
- Use a static connection pool

(min = max number of sessions).
- Maximum 10 connections per cpu core

on the database system

Source: Oracle 21, Universal Connection Pool Developer's
Guide, Section: About Optimizing Real-World Performance with
Static Connection Pools

Containers, Kubernetes, …

CPU Oversubscription – The Knee in the Curve

--time-- procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st

...
12:11:06 39 0 8504 48798124 42288 215586016 0 0 6 137 69634 161953 62 4 34 0 0
12:11:11 43 0 8504 49408448 42288 215586752 0 0 16 515 72534 175330 79 5 16 0 0
12:11:16 78 0 8504 49316252 42288 215588448 0 0 6 504 91720 195323 81 8 10 0 0
12:11:21 71 0 8504 48885032 42288 215591136 0 0 268 1302 94536 202266 87 8 5 0 0
12:11:26 61 0 8504 49080848 42288 215594000 0 0 6 380 80673 193100 87 6 7 0 0
12:11:32 32 0 8504 49055484 42288 215596896 0 0 187 2163 75637 191474 84 6 10 0 0
12:11:37 38 0 8504 49038896 42288 215599872 0 0 10 253 79153 174189 79 5 16 0 0
12:11:42 53 0 8504 49026524 42288 215453760 0 0 10 1888 77789 171116 76 5 18 0 0
12:11:47 54 0 8504 48945376 42288 215454000 0 0 8 241 84896 193286 80 6 14 0 0

With 28 CPUs, queueing delay
kicks in at ~88 %. Beyond that
point, response times increase
exponentially!

Image source: https://www.desmos.com/calculator/cqh81xgspq

System
busy!

Situations like this may result in con-
nection drops and network timeouts!

Connection & Logon Storms – System Statistics

AWR Logons Statistic

In AWR reports, the Load Profile
section shows a logons statistics.

This statistic represents logons
cumulative and is therefore not a
reliable indicator for the number of
application/end users logons.

To track effective end user logons, use
the statistics user logons cumulative
and its complement user logouts
cumulative.

user logons cumulative

This statistic is incremented every time a process starts.

It includes non-user calls such as parallel query secondary calls, and job
queue processes calls (in the case of Parallel Execution it will increment
each time a new parallel worker process starts).

This statistic tracks "real" application/end user logons.

Shown as "logons" in
AWR reports!

logons cumulative

Client and Server Side TNS Timeouts
("Connect Timeouts")

TNS Timeouts – Overview

sqlnet.ora: SQLNET.INBOUND_CONNECT_TIMEOUT

Client

Listener

Server
Processes

tnsnames.ora: TRANSPORT_CONNECT_TIMEOUT

sqlnet.ora: SQLNET.OUTBOUND_CONNECT_TIMEOUT

listener.ora: INBOUND_CONNECT_TIMEOUT_listener_name

TNS Connect Timeout

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521))

)
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521))
)
(CONNECT_DATA =

(SERVICE_NAME = MY_TEST_RW.WORLD)
)

)
)

This section is mainly
about this setting!

TNS Handshake – SCAN and Node Listeners

Client
SCAN

Listener

Packet Types

NSPTCN: Connect Packet
NSPTRD: Redirect Packet
NSPTRS: Resend Packet
NSTPAC: Accept Packet
NSPTDA: Data Packet

Client
Node

Listener

The SCAN listener's main job is to redirect clients to a node
listener.

The redirect target address is defined by the LOCAL_LISTENER
setting.

Note that the client sends a
CONNECT packet twice. We'll
see why in a minute …

The Dance

Connect Timeouts – The Dance Between Client and Server

Node
Lsnr

Child1
Child2
(FG)

NSPTCN

SCAN
Lsnr

NSPTCN

NSPTRD

NSPTCN

NSPTRS

NSPTAC

19c+: Auto OOB Check (TCP URG)

NSPTDA: Authentication + Encryption Negotiation

(TNS Connection open. Configure Auto-ONS if enabled.)

CONNECT_TIMEOUT

CONNECT_TIMEOUT

fork()

(terminate)

Server
OS

TRANSPORT_
CONNECT_TIMEOUT

connect()

accept()

epoll_wait()

epoll_wait()

epoll_wait()

accept()

epoll_wait()

INBOUND_CONNECT_
TIMEOUT_listener_SCANn

INBOUND_CONNECT_
TIMEOUT_listener_name

execve()

nsbequeath: NSE=12586 setitimer()

SQLNET.INBOUND_
CONNECT_TIMEOUT

This timeout is
delivered via a
signal (SIGALRM).fork()

NSPTDA

(wakeup)

(wakeup)

The server will wait in
poll() for a POLLPRI
event with infinite
timeout (Auto OOB).

ORA-12170

ORA-12170

ORA-12170

ORA-12170

ORA-609

TRANSPORT_
CONNECT_TIMEOUT

connect()

cond wait timeout = 10 sec
(hard coded in

libclntsh.so.19.1
kpueONSRegister)

1-3

Connect Timeouts – The Dance Between Client and Server (Auto-ONS)

Thread
1-3

Client
OS

pthread_create()

ONS
Prmry

ONS
Stdby

1-3
Thread

4-6

spawn thread1

spawn thread2

spawn thread3

spawn thread4

spawn thread5

spawn thread6

connect()

connect()

connect()

connect()

connect()

connect()

Threads 1-3 block in
connect()
[Blocking Socket]

Threads 4-6 block in
connect()
[Blocking Socket]

pthread_cond_wait()

signal cond
signal cond

The main thread can
proceed when the
condition is met or the
timeout has expired.

At this point the
database session is
now open.

10 sec

If ONS port 6200 is
blocked by a fire-
wall, connections
have to wait for 10
sec here!

ONS Registration

Summary

Network Timeouts Summary

RemarkParametersDefault DurationTimeout

Further details in Appendix A/etc/resolv.conf:

timeout: <n>
attempts: <n>

Configurable.
Default: timeout x attempts x searches

DNS lookup timeout

Not configurable; defined by kernel constant
TCP_TIMEOUT_INIT on Linux.

Can be overriden with a BPF hook in in kernels
4.12+.

Linux: 1 sec
Windows: 1 sec

TCP Initial Retransmit Timeout

Further details in Appendix Btcp_syn_retriesLinux: 127 secTCP Initial Connection Timeout

Further details in Appendix CInifiniteClient TCP Idle Timeout without Keepalive

Further details in Appendix CClient tnsnames.ora
ENABLE=BROKEN

> 2hClient TCP Idle Timeout with Keepalive

Further details in Appendix CInfiniteServer TCP Idle Timeout without Keepalive

Further details in Appendix CServer-side sqlnet.ora:
SQLNET.EXPIRE_TIME

InfiniteServer TCP Idle Timeout with Keepalive

Further details in Appendix Ctcp_retries213 -60 min.TCP Retransmit Timeout Established Connection

sqlnet.ora
NAMES.LDAP_CONN_TIMEOUT

15 secOracle TCP Connect Timeout to OID/LDAP

Further details in Appendix Bsqlnet.ora
TCP.TRANSPORT_CONNECT_TIMEOUT

tnsnames.ora
TRANSPORT_CONNECT_TIMEOUT

60 secOracle Client TCP Connect Timeout to SCAN
and Node Listener

Further details in Appendix ENone (hardcoded)10 secOracle Client TCP Connect Timeout to ONS

You usually don't need these!
Further details in Appendix C

SQLNET.SEND_TIMEOUT
SQLNET.RECEIVE_TIMEOUT

ConfigurableOracle Client and Server Socket Send and
Receive Timeout

If the network is slow, all these timeouts can add up!

Connection String Format – Recommended Starting Point

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521))

)
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521))
)
(CONNECT_DATA =

(SERVICE_NAME = MY_TEST_SERVICE_RW.WORLD)
)

)

Give the server enough time and
headroom in load burst situations
(avoid cancelling TNS connection
requests too early as this can trigger
aggressive connection pool behavior).

Don't go too low, consider clients
with a 3 sec initial TCP RTO and
set the transport connect timeout
slightly higher.

Enable TCP keepalive
on the client.

Use ADRESS_LIST clauses to reduce
the nr of DNS lookup requests and
to enable Auto-ONS with FAN (s.
details in Appendix).

Modified from Source: Oracle Whitepaper, Application Checklist for Continuous Service for MAA Solutions, Oracle Technical Brief, 2023-07-23

Add additional parameters
like RETRY_COUNT and
RETRY_DELAY as needed
(not shown).

Thank you for attending!

Questions, feedback, comments?
I look forward to hearing from you!

christoph.lutz@swisscom.com

@chris_skyflier

Symposium 42 | @sym_42

There's much more information in the Appendix!
Appendix A: DNS
Appendix B: TCP Timeouts - New Connections
Appendix C: TCP Timeouts - Established Connections
Appendix D: Out of Band Breaks (OOB)
Appendix E: Fast Application Notification (FAN)
Appendix F: SQL*Net Tracing
Appendix G: Connect Timeouts (Static Diagrams)

References

References (1/2)

Arthur Chiao, TCP Socket Listen: A Tale of Two Queues, 2022-08-28

Beat Ramseier, Are you fishing or catching? – Server-side SQL*Net tracing for specific clients, 2017-10-15

Brendan Gregg, Systems Performance Enterprise and the Cloud, Second Edition, Addison-Wesley, 2021

Chris Down, Creating controllable D state (uninterruptible sleep) processes, 2024-02-05

Franck Pachot, SQLNET.EXPIRE_TIME and ENABLE=BROKEN, 2020-02-15

Jim Cromie, Linux Kernel Newbies Mailing List, Thread: getconf CLK_TCK and CONFIG_HZ, 2011-03-12

Marco Pracucci, Linux TCP_RTO_MIN, TCP_RTO_MAX and the tcp_retries2 sysctl, 2018-04-27

My Oracle Support: 12c Client: Approximate 9 - 10 Second Delay in Connecting via Remote SQL*Plus (Doc ID 2218140.1)

My Oracle Support: Reducing Client Connection Delays When DNS Is Unresponsive (Doc ID 1449843..1)

My Oracle Support, Oracle Net Listener Trace shows NSE=12586, is This an Error ? (Doc ID 738724.1)

Oracle 19c, Net Services Administrator's Guide

Oracle 21, Universal Connection Pool Developer's Guide, Section: About Optimizing Real-World Performance with Static Connection Pools

References (2/2)

Oracle Net8 Administrator's Guide, Release 8.1.5, Section 6: Configuring Naming Methods and the Listener

Oracle Whitepaper, Application Checklist for Continuous Service for MAA Solutions, Oracle Technical Brief, 2023-07-23

Oracle Whitepaper, Fast Application Notification (FAN), December 2016

RedHat Customer Portal, How to tune the DNS client resolver library through /etc/resolv.conf, 2016-02-25

Appendix A: DNS

DNS – getaddrinfo API

struct addrinfo

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr* ai_addr;
char* ai_canonname; /* canonical name */
struct addrinfo* ai_next; /* this struct

* can form a
* linked list
*/

};

Hostname
to look up.

Service name
or port.

List of
getaddrinfo
results.

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

Hints / options
to direct the
getaddrinfo
operation.

DNS – getaddrinfo Example Program

getaddrinfo API

getaddrinfo()

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

struct addrinfo

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr* ai_addr;
char* ai_canonname; /* canonical name */
struct addrinfo* ai_next; /* this struct

* can form a
* linked list
*/

};

int main(int argc, char *argv[]) {

struct addrinfo hints, *res, *result;
void *ptr;
char addrstr[INET_ADDRSTRLEN];
int err;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags |= AI_CANONNAME;

err = getaddrinfo("my-scan01.mydomain.net", NULL, &hints, &result);

if (err != 0) {
fprintf(stderr, "error in getaddrinfo: %s\n", gai_strerror(err));
exit(EXIT_FAILURE);

}

for (res = result; res != NULL; res = res->ai_next) {

switch(res->ai_family) {
case AF_INET:

ptr = &((struct sockaddr_in *) res->ai_addr)->sin_addr;
break;

case AF_INET6:
ptr = &((struct sockaddr_in6 *) res->ai_addr)->sin6_addr;
break;

}

inet_ntop (res->ai_family, ptr, addrstr, INET_ADDRSTRLEN);
printf("IPv%d address: %s (%s)\n", res->ai_family == PF_INET6 ? 6 : 4,

addrstr, res->ai_canonname);
}

freeaddrinfo(result);
return 0;

}

Provide hints (options) to direct
the getaddrinfo operation:
- AF_UNSPEC: Allow IPv4 or IPv6
- SOCK_STREAM: TCP Socket

Example Program Output

./ex_gai

IPv4 address: xxx.xxx.xxx.36 (my-scan01 …)
IPv4 address: xxx.xxx.xxx.38 ((null))
IPv4 address: xxx.xxx.xxx.37 ((null))

Call getaddrinfo
with a SCAN
hostname

Loop over addrinfo
structures returned by
getaddrinfo

Check if result is an
IPv4 or IPv6 address.

Print result

Resolver Logic – Basic Mechanism

As per the resolver logic on the left, the
total number of lookups is determined as
follows:

total lookups = attempts x nameservers

The resolver's configuration may aggravate
the Oracle client's default DNS lookup
behavior.

The more IP addresses you need to lookup
and the more retries you have configured,
the longer the potential delay when DNS is
slow or unrespon-sive!

Anyway, let's verify this …

/etc/resolv.conf

options attempts:2
options timeout:4
options rotate

search mydomain.net

nameserver 1.2.3.4
nameserver 4.3.2.1

Resolver Logic

for each attempt:
for each DNS server:

lookup "hostname":
connect()
sendto()
poll(... timeout(ms))
recvfrom() if there is reply

if reply (success or fail), return

The rotate option will
change (shuffle) the
order in which name-
servers are iterated.

Source: RedHat Customer Portal, How to tune the DNS client resolver library through /etc/resolv.conf, 2016-02-25

Resolver Logic – DNS Timeouts & Retries

Test Case: Block incoming DNS Traffic & run the test program

iptables -A INPUT -p udp --sport 53 -j DROP

strace -e trace=sendto,poll ./ex_gai

TraceReq#
sendto(3, "Z\261\1\0\0\1\0\0\0\0\0\0\vmy-scan01\10mydomain"..., 42, MSG_NOSIGNAL, NULL, 0) = 42
poll([{fd=3, events=POLLIN}], 1, 4000) = 0 (Timeout)

1

sendto(4, "Z\261\1\0\0\1\0\0\0\0\0\0\vmy-scan01\10mydomain"..., 42, MSG_NOSIGNAL, NULL, 0) = 42
poll([{fd=4, events=POLLIN}], 1, 4000) = 0 (Timeout)

2

sendto(3, "Z\261\1\0\0\1\0\0\0\0\0\0\vmy-scan01\10mydomain"..., 42, MSG_NOSIGNAL, NULL, 0) = 42
poll([{fd=3, events=POLLIN}], 1, 4000) = 0 (Timeout)

3

sendto(4, "Z\261\1\0\0\1\0\0\0\0\0\0\vmy-scan01\10mydomain"..., 42, MSG_NOSIGNAL, NULL, 0) = 42
poll([{fd=4, events=POLLIN}], 1, 4000) = 0 (Timeout)

4

sendto(3, "D'\1\0\0\1\0\0\0\0\0\0\vmy-scan01\10mydomain"..., 55, MSG_NOSIGNAL, NULL, 0) = 55
poll([{fd=3, events=POLLIN}], 1, 4000) = 0 (Timeout)

5

sendto(4, "D'\1\0\0\1\0\0\0\0\0\0\vmy-scan01\10mydomain"..., 55, MSG_NOSIGNAL, NULL, 0) = 55
poll([{fd=4, events=POLLIN}], 1, 4000) = 0 (Timeout)

6

sendto(3, "D'\1\0\0\1\0\0\0\0\0\0\vmy-scan01\10mydomain"..., 55, MSG_NOSIGNAL, NULL, 0) = 55
poll([{fd=3, events=POLLIN}], 1, 4000) = 0 (Timeout)

7

sendto(4, "D'\1\0\0\1\0\0\0\0\0\0\vmy-scan01\10mydomain"..., 55, MSG_NOSIGNAL, NULL, 0) = 55
poll([{fd=4, events=POLLIN}], 1, 4000) = 0 (Timeout)

8

error in getaddrinfo: Name or service not knownn/a

We can clearly see the
request timeout of 4 sec
used, but the total number
of requests is 8 and there-
fore twice to what is
expected!

What is going on?!

/etc/resolv.conf

options attempts:2
options timeout:4
…
Nameserver 1.2.3.4
nameserver 4.3.2.1

With this configuration, we'd
expect a total number of
requests of 4 :
attempts x nameservers =
2 x 2 = 4

Resolver Logic – Search List: What If No Result?

What if there is no result?

The resolver's logic will always try at least one
search if a lookup doesn't return a result and if
the following conditions are met:

- Hostname contains a domain part
- Hostname contains no trailing dot

(non absolute domain name)
- RES_DNSRCH is enabled (default, s. below)

So, worst case, the total number of lookups is as
follows:

total lookups = 2 x nameservers x attempts

This behavior cannot be changed via
configuration options in /etc/resolv.conf!

RES_DNSRCH

If set, res_search() will search for hostnames in
the current domain and in parent domains. This
option is used by gethostbyname(3). [Enabled by
default].

Resolver Logic: Function __res_context_search (res_query.c)

/*
* We do at least one level of search if
* - there is no dot and RES_DEFNAME is set, or
* - there is at least one dot, there is no trailing dot,
* and RES_DNSRCH is set.
*/

if ((!dots && (statp->options & RES_DEFNAMES) != 0) ||
(dots && !trailing_dot && (statp->options & RES_DNSRCH) != 0)) {
…

Resolver Logic: Function __res_context_query Arguments (res_query.c)

Breakpoint 2, __GI___res_context_query (ctx=ctx@entry=0x602010,
name=name@entry=0x400950 "my-scan01.mydomain.net", …

) at res_query.c:113

Breakpoint 2, __GI___res_context_query (ctx=ctx@entry=0x602010,
name=name@entry=0x7ffffffed110 "my-scan01.mydomain.net.mydomain.net", …

) at res_query.c:113

If the resolver fails to get a
result, it will always try at
least one search and the
search will send a request to
all nameservers again!

The resolver appends
the default domain
and then performs an
additional search.

Resolver Logic – Behavior in Case of No Result

Resolver Logic in Case of No Result

for each attempt:
for each DNS server:

check DNS server for "hostname":
connect()
sendto()
poll(... timeout(ms))
recvfrom() if there is reply

if reply (success), return

for each attempt:
for each DNS server:

check DNS server for "hostname.DEFAULT_DOMAIN":
connect()
sendto()
poll(... timeout(ms))
recvfrom() if there is reply

if reply (success), return

/etc/resolv.conf

options attempts:2
options timeout:4
options rotate

search mydomain.net

nameserver 1.2.3.4
nameserver 4.3.2.1

Resolver Logic – Oracle Client

The Oracle client has its own retry logic and
similar to the libc resolver, tries to look up a SCAN
a second time when the first lookup fails.

Worst case, the total number of request is as
follows by default:

((2 x SCANS) + 1)) x nameservers x attempts x
searches x 2

Ultimately, if none of the lookups will succeed,
the Oracle client will fail with the following error
message:

ORA-12545: Connect failed because target host
or object does not exist

#0 0x00007f6f6491a080 in sendmmsg ()
#1 0x00007f6f64bf25dd in __res_context_send ()
#2 0x00007f6f64bef394 in __res_context_query ()
#3 0x00007f6f64bf01e0 in __res_context_search ()
#4 0x00007f6f63ddcf09 in _nss_dns_gethostbyname4_r ()
#5 0x00007f6f64900364 in gaih_inet.constprop.8 ()
#6 0x00007f6f64901704 in getaddrinfo ()
#7 0x00007f6f66d9c8f3 in snlinGetAddrInfo ()
#8 0x00007f6f66dda95c in nttbnd2addr ()
#9 0x00007f6f66cdd6b3 in ntacbbnd2addr ()
#10 0x00007f6f66cdd429 in ntacbnd2addr ()
#11 0x00007f6f66c8998f in nsgettrans_bystring ()
#12 0x00007f6f66cf5beb in niotns ()
#13 0x00007f6f66d00a1d in osncon ()
#14 0x00007f6f66ba0a77 in kpuadef ()
#15 0x00007f6f66b86699 in upiini ()
#16 0x00007f6f66b9f253 in kpuatch ()
#17 0x00007f6f66b7a705 in OCIServerAttach ()
#18 0x00007f6f6a8d890d in aficntatt ()
#19 0x00007f6f6a8d806b in aficntcon ()
#20 0x00007f6f6a8de797 in aficoncon ()
#21 0x00007f6f6a8dce16 in aficon ()
#22 0x00007f6f6a8d5c8e in aficmd ()
#23 0x00007f6f6a8d4617 in aficfd ()
#24 0x00007f6f6a8d315c in aficdr ()
#25 0x00007f6f6a900aa6 in afidrv ()
#26 0x0000000000400d60 in main ()

libsqlplus.so

libclntsh.so.19.1

libresolv.so.2

libc.so.6

libc.so.6

libnss_dns.so.2

glibc

Oracle

If dns lookups fail, the Oracle
client tries again a second
time.

Resolver Logic – Examples

Default Behavior

Worst Case Normal Case

lookup requests =
((2 x SCANS) + 1)) x nameservers x attempts x searches x 2 =

5 x 2 x 2 x 2 x 2 = 80
[Assuming 2 nameservers and 2 attempts]

lookup requests = (SCANs + 1) x 2

- The Oracle client resolves the first SCAN twice (two calls
to snlinGetAddrinfo / getaddrinfo for the first SCAN)

- The resolver performs an additional IPv6 lookup for every
request.

lookup requests =
(2 x SCANs) x nameservers x attempts x searches x 2
= (2 x 2) x 2 x 2 x 2 x 2 = 64
[Assuming 2 nameservers and 2 attempts]

lookup requests = SCANs x 2

- The Oracle client resolves every SCAN once (one call to
snlinGetAddrInfo / getaddrinfo per SCAN)

- The resolver performs an additional IPv6 lookup for
every request

lookup requests =
(2 x SCANs) x nameservers x attempts x searches =

(2 x 2) x 2 x 2 x 2 = 32
[Assuming 2 nameservers and 2 attempts]

Lookup requests = SCANs

- The Oracle client resolves every SCAN once (one call to
snlinGetAddrInfo / getaddrinfo per SCAN)

- The resolver performs an IPv4 lookup only

ADDRESS_LIST

ADDRESS_LIST and
IP=V4_ONLY

timeout

Resolver Logic – Optimizations

Resolver Optimizations

The libc resolver has neat low-level
optimizations that aim to improve
efficiency.

lookup

Client
OS

DNS1 DNS2
Res-
olver

sendmmsg()

request 1 (IPv4)

request 2 (IPv6)poll()
(sleep)

request 1 (IPv4)

timeout
poll()
(sleep)

request 2 (IPv6)

sendmmsg() sends
multiple requests in
a single call.

When an earlier lookup request to a
nameserver runs into a timeout, the
resolver does not close the socket but
keeps it open. If a late reply from an
earlier nameserver arrives before the
new nameserver's reply, the resolver
uses it and carries on.

DNS & EZConnect – History

HOSTNAME Adapter (Oracle 8i days)

Configuration OptionConfiguration File

NAMES.DIRECTORY_PATH=(HOSTNAME)Client: sqlnet.ora

xxx.xxx.xxx.45 myhostdb03-v.mydomain.net mydomain.netClient: /etc/hosts or
Server: DNS

GLOBAL_DBNAME = MYDOMAIN.NETServer: listener.ora

Note:

In 11g+ the HOSTNAME adapter will only work when either of the following is configured:

- DEFAULT_SERVICE_LISTENER_listener_name (server-side)

- HOSTNAME.DEFAULT_SERVICE_IS_HOST=1 (client-side)

Host Naming Method

Before the introduction of EZConnect naming
in Oracle 10g, the "Host Naming Method"
provided a "simple connectivity" mechanism.

When configured, the HOSTNAME adapter
allows database clients to resolve the global
database name via DNS or /etc/hosts, which
eliminates the need to maintain TNS connect
descriptors in a tnsnames.ora file.

With the HOSTNAME adapter, clients resolve a database global name via DNS or
/etc/hosts and don't need a tnsnames.ora configuration file to connect to a
database.

Oracle Net8 Administrator's Guide, Release 8.1.5, Section 6: Configuring Naming Methods and the Listener

If this resolves via
/etc/hosts or DNS,
no tnsnames.ora is
needed!

DNS & EZConnect – Name Lookups

The HOSTNAME naming method has been carried over into EZCONNECT.

With EZCONNECT and a connection string like this, Oracle will try to resolve the
TNS service name via DNS.

Oracle 19c, Net Services Administrator's Guide, Section 8.1.5 Configuring Easy Connect Naming to Use a DNS Alias

Naming Method Order

Always put the main naming methods(s) in
NAMES.DIRECTORY_PATH first as otherwise the
client may attempt to unecessarily resolve the
service name via DNS.

connect username/password@MYDOMAIN.NET

If no service name is not found in DNS, the resolver will iterate over all domain
entries in the search list and this can generate a lot of DNS lookup requests!

Be careful with the naming method order in NAMES.DIRECTORY_PATH.

Always put the main naming method(s) first!

Why should we care?!

EZConnect will try to
resolve this via DNS
by default!

NAMES.DIRECTORY_PATH(EZCONNECT,TNSNAMES)

This way, EZConnect will be tried
first which can result in lots of
unecessary DNS requests before
the service name is found in
tnsnames.ora.

Appendix B:
TCP Timeouts – New Connections

Socket API – Blocking Socket Example

Blocking Sockets– connect()

When an application calls connect(), it will
block until the kernel has managed to
establish a TCP connection.

If the communication endpoint does not
respond to the connection request (SYN),
the kernel will retry and retrans-mit the
SYN multiple times until hitting an OS-
specific timeout!

Kernel

Process

SYN SYN/ACK ACK

int main(int argc, char *argv[]) {

int sockfd = 0;
struct sockaddr_in serv_addr;

memset(&serv_addr, '0', sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
inet_pton(AF_INET, argv[1], &serv_addr.sin_addr);
serv_addr.sin_port = htons(atoi(argv[2]));

sockfd = socket(AF_INET, SOCK_STREAM, 0);

connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr));
printf("Connected.\n");

close(sockfd);
return 0;

}

connect()

Declare socket
data structures.

Initialize serv_addr. This
structure will contain the
destination IP and port.

Create a new TCP
socket.

Open a new TCP
connection to the
target IP and port.

Now the application is
aware of the established
connection and can
proceed.

Blocking vs Non-Blocking Sockets (Fully Animated)

connect()

Kernel
Appli-
cation

X

X

SYN

SYN

sleep

sleep

XSYN

sleep

1 sec (initial RTO)

Peer

2 sec

… 64 sec

ETIMEDOUT

connect
failure

127 sec
connect()
blocked

connect()

Kernel
Appli-
cation

X

X

SYN

SYN

sleep

sleep

1 sec (initial RTO)

Peer

2 sec

connect
failure

poll()
sleep

EINPROGRESS

wakeup (timeout)

3 sec

With non-blocking sockets,
the connect fails after the
poll timeout has expired
(3 sec in this example).

With blocking sockets, the
connect fails after the OS-
specific TCP timeout has
expired (127 sec on Linux).

Blocking Socket Non-Blocking Socket

Socket API – Non-Blocking Socket Example

Non-Blocking Sockets – connect()

When an application calls connect(), the call
will not block and return immediately with -
1 and errno set to EINPROGRESS.

This signals to the calling process that the
socket is not ready yet and that it can wait
for the socket to become ready with poll(),
which will put the calling process to sleep
until the socket is ready or until the timeout
exceeds.

Kernel

Process

SYN SYN/ACK ACK

if((fcntl(sockfd, F_SETFL, fcntl(sockfd, F_GETFL, 0) | O_NONBLOCK)) == -1) {
printf("Error: fcntl\n");
return 1;

}

struct pollfd pfds[1];
pfds[0].fd = sockfd;
pfds[0].events = POLLOUT;

if(connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) == -1) {

if(errno == EINPROGRESS) {

sock_ready = poll(pfds, 1, 3000);

if(sock_ready > 0 && pfds[0].revents & POLLOUT) {
printf("Connection is ready.\n");

}
else if (sock_ready == 0) {

printf("Connection timed out.\n");
}
else {

printf("poll failed. Aborting.\n");
return 1;

}
}

}

connect()

The poll() call puts the process to
sleep until the timeout expires
or the kernel wakes it up
because the socket is ready.

poll()

(wakeup)

(sleep)The connect() call returns
immediately with -1
because the socket is not
ready yet.

Make the socket non blocking
with the O_NONBLOCK flag.

Declare and initialize the pollfd
structure.

The connect() will return an
error with errno set to
EINPROGRESS. This means the
socket is not ready yet.

Call poll() with a
timeout of 3000 ms.

Check the poll()
resullt. If successful,
the socket is ready, if
not we may have run
into the timeout.

The kernel starts opening a
new TCP connection.

TCP Packet Loss – TCT <= Initial RTO

TRANSPORT_CONNECT_TIMEOUT

If the TRANSPORT_CONNECT_TIMEOUT
expires before the initial RTO got a chance
to "recover" from a TCP packet loss, the
client will give up and cancel the connection
attempt even though a TCP connection
would have been established shortly after a
successful retransmit.

Setting TRANSPORT_CONNECT_TIMEOUT to
a value higher than the initial RTO on the
OS side, will give a client more headroom to
recover from processing delay situations
(which may occur during temporary load
bursts on the network or on the server
side).

connect()

Transport Connect
Timeout

3 sec

Client
OS

DB
Server

SYN

ACK
Timeout exceeded!
Cancel connection
attempt.

X

This takes a while,
close to 3 sec …SYN/ACK

Connection got established too
late, the client already cancelled
the connection attempt!

 TRANSPORT_CONNECT_TIMEOUT: 3 sec

 TCP Initial RTO: 3 sec (Windows)

Ideally set the TRANSPORT_CONNECT_TIMEOUT to a higher value than the initial
RTO on the OS side! This will give the client a chance to recover a connection
when there are processing delays.

return connect()

TCP Packet Loss – Real Life Scenario

Application Log (Windows Java Client)

2023-07-08T11:20:12.186: Checking ip: xxx.xxx.xxx.xxx:1521

2023-07-08T11:20:15.190:
*** Java Stack Trace ***
*** Exception caught ***
Message: connect timed out

Tcpdump (Server)

11:20:12.184377 IP ccc.ccc.ccc.ccc.56873 > xxx.xxx.xxx.xxx.1521:
Flags [S], seq 1762175761

11:20:15.185235 IP ccc.ccc.ccc.ccc.56873 > xxx.xxx.xxx.xxx.1521:
Flags [S], seq 1762175761

11:20:15.185262 IP xxx.xxx.xxx.xxx.1521 > ccc.ccc.ccc.ccc.56873:
Flags [S.], seq 2104104716, ack 1762175762

11:20:15.186823 IP ccc.ccc.ccc.ccc.56873 > xxx.xxx.xxx.xxx.1521:
Flags [.], ack

TRANSPORT_CONNECT_TIMEOUT = 3

Connection
attempt (SYN).

Retry succeeds 3 sec
later after initial RTO
of 3 sec

Transport Connect
Timeout expires
before application
becomes aware of
established TCP
connection!

vmstat

--time-- procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st

11:20:07 102 0 59904 125475856 15392 224277552 0 0 18 2756 277874 274871 84 12 4 0 0
11:20:12 128 2 59904 125257056 15392 224281312 0 0 56 3870 283630 290438 85 12 3 0 0
11:20:18 123 0 59904 125012976 15392 224288320 0 0 15 466 256425 263106 85 11 4 0 0
11:20:23 112 0 59904 124652552 15392 224295280 0 0 20 3778 232582 204669 88 9 3 0 0

System very busy
and saturated at
during problem
time!

Transport Connect Timeout Calculation – Oddities

poll timeout ms
Texpire - T0

Texpire =
T0 + TCT

T1 T2 T3 T4 T5

poll1 timeout ms

floor(Texpire - T1)

Texpire =
Td + TCT

T1 T2 T3 T4 T5

nstoCalc
WaitTime

T0

nstoSetup
Timeout

T0

1. nstoSetupTimeout
2. nstoCalcWaitTime

delay

Td

Timer
innacuracy

nstoCalc
WaitTime

ceil(Texpire - T4)

poll2 timeout ms

Timing Oddities

nstoSetupTimeout calculates an expi-ration
time by adding the transport connect
timeout value to the current time (Texpire =
Tcurrent + TCT).

nstoCalcWaitTimeout calculates how much
wait time is left by subtracting the current
time from the expiration time (timeout =
Texpire - Tcurrent).

When nstoSetupTimeout and
nstoCalcWaitTime execute at "the same
time" (within the same clock interval
returned by the times system call), the
timeout in ms (Texpire – Tcurrent) is an integer
multiple in sec. However, when execution
incurs a delay or the functions don't execute
within the same clock interval, the timeout is
not an integer multiple in sec and gets
rounded down.

When that happens, the client issues calls to
poll() again until the expiration time Texpire has
exceeded.

Transport Connect Timeout Calculation – Example

Connection String

MY_TEST.TEST.DBS =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)
…

Sometimes you'll find the timeout
settings and poll() timeouts do not
match, they're mostly off by 1 sec.
Why is this?

./ora_connect2.bt --unsafe <client_pid>

23:27:07 180006/180006: connect: fd=9, xxx.xxx.xxx.xxx:1521

23:27:07 180006/180006: poll: fd=9, event=POLLOUT, timeout=3000

nstoControlTTO() calculates the
timeout expiration time by adding
the timeout to the current time (it
converts ticks to milliseconds)23:27:07 180006/180006: nstoControlTTO: entry

23:27:07 180006/180006: times: ret=593455102
23:27:07 180006/180006: nstoSetupTimeout: timeout_ms=4000, ticks_curr_ms=5934551020
23:27:07 180006/180006: nstoSetupTimeout: ticks_curr_ms+timeout_ms=5934551020+4000=5934555020
23:27:07 180006/180006: nstoSetupTimeout+130: timeout_ms=4000
23:27:07 180006/180006: nstoSetupTimeout+133: t_expire_ms=5934555020
23:27:07 180006/180006: nstoControlTTO: ret=0

23:27:07 180006/180006: nstoCalcWaitTime: entry
23:27:07 180006/180006: times: ret=593455103
23:27:07 180006/180006: nstoCalcWaitTime+39: ticks_curr_ms=5934551030, t_expire_ms=5934551020
23:27:07 180006/180006: nstoCalcWaitTime+39: t_expire_ms-ticks_curr_ms=5934555020-5934551030=3990
23:27:07 180006/180006: nstoCalcWaitTime: ret=3990

23:27:09 180006/180006: nstoCalcWaitTime: entry
23:27:09 180006/180006: times: ret=593455303
23:27:09 180006/180006: nstoCalcWaitTime+39: ticks_curr_ms=5934554030, t_expire_ms=5934551020
23:27:09 180006/180006: nstoCalcWaitTime+39: t_expire_ms-ticks_curr_ms=5934555020-5934554030=990
23:27:09 180006/180006: nstoCalcWaitTime: ret=990

23:27:09 180006/180006: poll: fd=9, event=POLLOUT, timeout=1000

nstoCalcWaitTime() calculates the
wait time / poll timeout in ms,
but this gets rounded down later
when passed to poll()!

Timeout Calculation

The Oracle client uses the times() sytem call
to calculate the expected timeout expiration
time.

This system call returns the number of clock
ticks since an arbitrary point in the past (on
OEL8, CLK_TCK returns 100 Hz, which means
times() uses a tick granularity of 1 cs).

The client internally converts the number of
ticks to milliseconds and calculates how
much timeout time is left. If the calculated
timeout value is not an integer multiple in
sec, it is rounded down to the nearest
integer value in seconds and used in the call
to poll().

The timeout value used by poll() can be
different from the timeout value set in
TRANSPORT_CONNECT_TIMEOUT due to
processing delays or timer granularity
effects!

Note that the CONNECT_TIMEOUT behaves
in a similar way.

If poll() completes and the expiration
time has not yet exceeded, the client
calculates a new timeout and calls poll()
again (if < 1 sec, the timeout gets
rounded up to 1 sec).

Transport Connect Timeout Calculation – Timing Effects

Happy
Path SetupTimeout CalcWaitTime

timesOS

Client

T1

times

Texpire = T1 + TCT

CalcWaitTime

Tcurrent

poll timeout ms

Texpire - Tcurrent

Timer
Resolution SetupTimeout CalcWaitTime

timesOS

Client

T1

times

Texpire = T1 + TCT

CalcWaitTime

Tcurrent

times result
inaccurate

poll timeout ms

Texpire - Tcurrent

Processing
Delays

SetupTimeout CalcWaitTime

timesOS

Client

times

T1

CalcWaitTime

Tcurrent Texpire = T1 + TCT

poll timeout ms

Texpire - Tcurrent

delay

If not an integer multiple in sec, the
poll timeout value is rounded down!
If the remaining time until , timeout
expiration has not been exceeded, a
second poll is issued (not shown
here). Poll timeout values < 1 sec
are rounded up to 1 sec.

If not an integer multiple in sec, the
poll timeout value is rounded down!
If the remaining time until , timeout
expiration has not been exceeded, a
second poll is issued (not shown
here). Poll timeout values < 1 sec
are rounded up to 1 sec.

Transport Connect Timeout – Timing Effects Example

Time

Happy Path

connect()

nstoSetupTimeout():

TCTexpire = Tcurr + TCTtns

8370 = 4730 + 4000

nstoCalcWaitTime():

Tcurr = times()

Tpoll = TCTexpire – Tcurr

4000 = 8730 – 4730

poll(): timeout = Tpoll (4000)

Processing Delays

connect()

nstoSetupTimeout():

TCTexpire = Tcurr + TCTtns

8370 = 4730 + 4000

nstoCalcWaitTime:

Tcurr = times()

Tpoll = TCTexpire – Tcurr

3999 = 8730 – 4731

poll(): timeout = Tpoll (3000)

Poll timeout rounded down to
nearest integer value in sec!

Processing Delay (1 ms)

Timer Resolution

connect()

nstoSetupTimeout():

TCTexpire = Tcurr + TCTtns

8370 = 4730 + 4000

nstoCalcWaitTime():

Tcurr = times() => times returns cs!

Tpoll = TCTexpire – Tcurr

3990 = 8730 – 4740

poll(): timeout = Tpoll (3000)

Poll timeout rounded down to
nearest integer value in sec!If rounded down, a second poll() will

be issued (not shown here). If the
remaining time until timeout
expiration is < 1 sec, the second poll
timeout value will be rounded up to
1 sec.

If rounded down, a second poll()
will be issued in this case as well
(not shown here).

TCP Backlog Queue – Details

ApplicationAccept QueueSYN Queue

TCP: SYN recv TCP: Send SYN/ACK

TCP: ACK recv

Syscall: listen()

int listen(int sockfd, int backlog);

The backlog argument defines the maximum
length to which the queue of pending connect-
ions for sockfd may grow.

Starting with Linux kernel version 4.3, the backlog
argument defines the length of the SYN and
ACCEPT queue.

Syscall: accept()net.ipv4.tcp_max_syn_backlog net.core.somaxconn

net.ipv4.tcp_synack_retries net.ipv4.tcp_syn_retries (Client)

How to monitor the Queue Lengths?

SYN Queue:
ss -plnt state syn-recv sport = :1521

Accept Queue:
ss -plnt sport = :1521

nstat Counters:
nstat -az |grep -i listen

BPF (bpftrace):
tcpsynbl.bt

struct inet_request_sock struct inet_sock

Oracle Listener
QUEUESIZE = 128 (default)

Change Default Queuesize (listener.ora)

listener_name= (DESCRIPTION= (ADDRESS=(PROTOCOL=tcp)
(HOST=server)(PORT=1521)(QUEUESIZE=1024)))

Image modified from source Brendan Gregg, Systems Performance Enterprise and the Cloud, Second Edition, Addisson-Wesley, 2021, p. 520

TCP Timeouts – SCAN Host Expansion

(DESCRIPTION=
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=TCP)(HOST=xxx.xxx.xxx.38)(PORT=1521)(HOSTNAME=my-scan01.mydomain.net))
(ADDRESS=(PROTOCOL=TCP)(HOST=xxx.xxx.xxx.37)(PORT=1521)(HOSTNAME=my-scan01.mydomain.net))
(ADDRESS=(PROTOCOL=TCP)(HOST=xxx.xxx.xxx.36)(PORT=1521)(HOSTNAME=my-scan01.mydomain.net)))

(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=TCP)(HOST=yyy.yyy.yyy.134)(PORT=1521)(HOSTNAME=my-scan02.mydomain.net))
(ADDRESS=(PROTOCOL=TCP)(HOST=yyy.yyy.yyy.133)(PORT=1521)(HOSTNAME=my-scan02.mydomain.net))
(ADDRESS=(PROTOCOL=TCP)(HOST=yyy.yyy.yyy.132)(PORT=1521)(HOSTNAME=my-scan02.mydomain.net)))

(CONNECT_DATA=(SERVICE_NAME=MY_TEST_RW.WORLD)
(CID=(PROGRAM=sqlplus)(HOST=myhostdb01.mydomain.net)(USER=oracle))

)
)

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=4)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521))

)
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521))

)
(CONNECT_DATA =
(SERVICE_NAME = MY_TEST_RW.WORLD)

)
)

)

SCAN1 IP
addresses.

SCAN2 IP
addresses.

SCAN Host Expansion

The client internally expands the SCAN and
constructs an ADDRESS entry for every
SCAN IP. If a connection attempt results in a
timeout, the client will retry and iterate
over all SCAN IPs of all ADDRESS_LIST
clauses (note also that the expanded TNS
descriptor uses the undocumented
HOSTNAME clause).

When a RETRY_COUNT has been speci-fied,
the client will attempt to connect to every
SCAN IP 1 + RETRY_COUNT times in total.

Depending on timeout settings, you may
not need to specify RETRY_COUNT as you
always get implicit retries with a SCAN!

nlad_expand_hst: Result:

The client attempts to connect to every IP
before giving up. If a RETRY_COUNT has
been specified, the client will try every
SCAN IP RETRY_COUNT times again after
the first iteration!

TCP Timeouts – DB Connection Attempts & Retries

Unhappy Path

1. Connect to SCAN Listener (Round Robin)

2. Get a TNS Redirect Packet (NSPTRD)

3. Connect to the Primary Node Listener

4. Connect to the next Primary SCAN IP

5. Connect to the Node Listener

6. Connect to the next SCAN IP

7. Connect to the Primary Node Listener

8. Repeat steps 1-7 on the Standby

9. Fail with Error

Happy Path (not illustrated)

1. Connect to the First SCAN IP (Round Robin)

2. Get a TNS Redirect Packet (NSPTRD)

3. Connect to the Node Listener
connect()

SCAN1
IP 1

SCAN2
IP 1

X

SCAN1
IP 2

SCAN1
IP 3

SCAN2
IP 2

SCAN2
IP 3

Prmry
VIP

TCT

X

Stdby
VIP

TCT

XTCT

XTCT

TCT X

XERR

The error depends on the problem situation:
- If standby vip is unreachable: ORA-12170
- If standby vip is reachable but the listener not aware of the service: ORA-12514

Other TCP Timeouts OID Timeouts

For TCP connections to OID/LDAP servers, there
is the NAMES.LDAP_CONN_TIMEOUT, which
defaults to 15 sec.

OID does not support load balancing across
multiple different servers.

If multiple OID/LDAP servers are config-ured,
the client attempts to connect to the first one
in the list of DIRECTORY_SERVERS and fails over
to the next one in case of an error or a timeout
(LDAP_CONN_TIMEOUT).

It will iterate over the list of
DIRECTORY_SERVERS for a maximum of five
times. If none of the connection attempts
succeeds, the client will fail with " ORA-12154:
TNS:could not resolve the connect identifier
specified".

ONS Timeouts

Connections to ONS use a (hardcoded) default
timeout of 10 sec. However, as will be shown
later, this is implemented differently than the
TCP timeouts we've looked at so far.

OID TCP Timeouts

 15 sec (default for NAMES.LDAP_CONN_TIMEOUT)

 In case of multiple DIRECTORY_SERVERS, each one is tried in order

 The list of DIRECTORY_SERVERS servers is iterated 5 times maximum (total
attempts = 5 x DIRECTORY_SERVERS)

 Note: OID connections are not load balanced (if the first server in the
list is not reachable, connections will hang).

ONS TCP Timeouts:

 10 sec (hardcoded)

The TRANSPORT_CONNECT_TIMEOUT only applies to TCP connections to
SCAN and node listeners. It does not apply to other connections!

TNS Timeouts – Documentation Review

TRANSPORT_CONNECT_TIMEOUT | TCP.CONNECT_TIMEOUT
- Timeout duration in ms, sec, or min for a client to establish an Oracle Net connection

to an Oracle database.

SQLNET.OUTBOUND_CONNECT_TIMEOUT (sqlnet.ora):
- Time for a client to establish an Oracle Net connection to the database server.
- The outbound connect timeout interval is a superset of the TCP connect timeout interval
- This parameter is overriden by the CONNECT_TIMEOUT in the address description.

INBOUND_CONNECT_TIMEOUT_listener_name (listener.ora):
- Time for a client to complete its connect request to the listener after the

network connection had been established.
- Set the value of INBOUND_CONNECT_TIMEOUT_listener_name parameter

to a lower value than the SQLNET.INBOUND_CONNECT_TIMEOUT.

SQLNET.INBOUND_CONNECT_TIMEOUT (sqlnet.ora):
- Time for a client to connect with the database server and provide the necessary

authentication information.

Client

Listener

Server
Processes

This is rather a TCP
connection.

This is true!

Plus Auto OOB check
and encryption
negotiation.

Sources:
Oracle Database 19c, Database Net Services Reference, Section 6.11: Timeout Parameters
Oracle Database 19c, Database Net Services Reference, Section 5.2: sqlnet.ora Profile Parameters
Oracle Database 19c, Database Net Services Reference, Section 7.4 Control Parameters

Connect timeout is additive (the
client starts a new connect
timeout whenever it connects to
a SCAN or node listener).

Appendix C:
TCP Timeouts – Established Connections

TCP Timeouts – Established Connections

MY_TEST.WORLD =
(DESCRIPTION =
(FAILOVER=ON)(TRANSPORT_CONNECT_TIMEOUT=3)(CONNECT_TIMEOUT=9)(ENABLE=BROKEN)

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan01.mydomain.net)(PORT = 1521))

)
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-scan02.mydomain.net)(PORT = 1521))

)
(CONNECT_DATA =
(SERVICE_NAME = MY_TEST_RW.WORLD)

)
)

)

This section explains
this setting (among
other things).

Established Connections – TCP Timeout Scenarios

Scenario #1
Active Connection

(TCP Retransmission)

Established Connection

Scenario #2
Idle Connection
(TCP Keepalive)

Established Connections – TCP Packet Loss Scenarios

Networks and communication peers are
unreliable and can potentially fail any
time. TCP copes with this kind of unre-
liability in different ways depending on
whether a connection is "active" or "idle".

X
Client Server

X
Client Server

The server can fail unexpectedly.

The client can fail unexpectedly.

X
Client Server

A firewall (or other network device) can close
connections unexpectedly.

"Active" Connections:
Retransmits

Established Connections

"Idle" Connections:
TCP Keepalive

TCP Retransmits – RTO Established Connections
TCP Retransmits

On Linux, the max number of retransmits
for unacknowledged TCP packets is
defined by the following tunable that
defaults to 15 on OEL 7:

net.ipv4.tcp_retries2

With a min RTO of 0.2 sec, a max RTO of
120 sec and 15 retries, the timeout is
924.6 sec (~15.4 min).

Note that the connection is detected as
broken after the 15th retry but it takes
another RTO of 120 sec to notify the
upper layers!

The constants TCP_RTO_MIN and
TCP_RTO_MAX are defined in include/
net/tcp.h:

#define TCP_RTO_MIN ((unsigned)(HZ/5))

#define TCP_RTO_MAX ((unsigned)(120*HZ))

Client Server

TCP_RTO_MIN = 0.2 sec

0.4 sec

0.8 sec

1.6 sec
and so on …

… up to:
TCP_RTO_MAX = 120

Time
ela sec

RTO
ms

Retrans-
mission

0.22001
0.64002
1.48003
3.01'6004
6.23'2005

12.66'4006
25.412'8007
51.025'6008

102.251'2009
204.6102'40010
324.6120'00011
444.6120'00012
564.6120'00013
684.6120'00014
804.6120'00015
924.6120'00016

The connection is detected as broken
when the last retry expires (15th retry)
but it takes another RTO to notify the
upper layers (16th retry)!

The kernel dynamically adjusts the RTO
at runtime depending on RTT.
Therefore, retransmit timeouts can take
up to 32 min (16 x 120 sec).

You can check the effective RTO and
RTT of a connection with: "ss –i".

Source: https://pracucci.com/linux-tcp-rto-min-max-and-tcp-retries2.html

When Tail Loss Probe (TLP) is
enabled (tcp_early_retrans >= 3) ,
you may see a "probe packet" here
before the retransmits.

TCP Retransmits – How To Detect?

How to detect TC Retranmits?

TCP retransmits are easiest to detect with
the following BPF based tools:

- BCC: tcpretrans
- bpftrace: tcpretrans.bt

The BCC tool tcpretrans is very power-
ful and can even detect TLP probes and
count the number of retransmits per TCP
stream (s. examples on the left)!

If BPF tools are not available, you can
revert to conventional packet capture
based tools like tcpdump and wire-shark.

./tcpretrans –l

TIME PID IP LADDR:LPORT T> RADDR:RPORT STATE
22:10:46 0 4 xxx.xxx.xxx.xxx:13470 L> yyy.yyy.yyy.yyy:1521 ESTABLISHED
22:10:46 0 4 xxx.xxx.xxx.xxx:13470 R> yyy.yyy.yyy.yyy:1521 ESTABLISHED
22:10:46 42454 4 xxx.xxx.xxx.xxx:13470 R> yyy.yyy.yyy.yyy:1521 ESTABLISHED
…

./tcpretans –c

LADDR:LPORT RADDR:RPORT RETRANSMITS
[xxx.xxx.xxx.xxx]#1521 <-> [yyy.yyy.yyy.yyy]#50456 4564
…

Show TCP retransmits incl. TLP in real-time

Count TCP retransmits per TCP stream

Tail Loss Probe (TLP)

TCP Retransmission – Optimizations

Timeout Based
Retransmission

TCP Retransmission

Fast Retransmission

Timeout Range:
[200 ms, 120 sec]

Benefit: Simple

Drawback: Slow

Goal:
Trigger retransmission faster than the
timeout based mechanism (after
receival of duplicate ACKs).

Selective ACK (SACK):
Optimization - only retransmit the
missing data segments.

Benefit:
Suitable for "hole loss".

Drawback:
No improvement for tail loss.

Tail Loss Probe (TLP)

Goal:
Avoid long RTOs. If no ACK has
been received within a short Probe
Timeout (PTO), retransmit the last
segment to trigger fast recovery
(SACK).

PTO Range:
max(2 * SRTT, 10 ms)

TCP Timeouts – RAC VIP Failover

RAC VIP Failover

When a RAC node fails or gets evicted, its
VIP fails over to another remaining node.

As soon as the VIP gets activated on a
remaining node, the remaining node will
reply with a RST to all clients that send
packets to the VIP that failed over.

This way, clients do not need to wait until
the TCP connect or retransmit timeouts
expire and can initiate a failover
immediately.

Note that this will only work as long as one
RAC node is available and reachable. If all
nodes are down or unreachable, clients
have to wait until the timeouts expire
before they can initiate a failover.

VIP
Node 1

VIP
Node 2

Node 2Node 1X
X

RAC Node Failure / Eviction RAC VIP Failover

TCP Retransmits until
TCP timeout expires

VIP
Node 1

VIP
Node 2

Node 2Node 1

When VIP has been
activated on Node 2,
clients will get a RST,
terminate the con-
nection and initiate a
failover

X
RST

Failover

When all RAC nodes are down or unreachable, clients have to wait
until the timeouts expire before they will initiate a failover!

Idle Connections – TCP Keepalive: Client to Server

ENABLE=BROKEN

The ENABLE=BROKEN clause will enable
TCP keepalive on the TCP socket.

Note though that TCP keepalive will only
be used on idle sockets, that is, sockets
without activity. If there is activity on a
socket, the normal TCP retransmit
timeouts apply.

Moreover, ENABLE=BROKEN relies on the
OS level keepalive settings and
depending on those, it may still take a
long time before a client will consider a
connection dead and clean it up (> 2h by
default on Linux)!

X
Client Server

The server can fail unexpectedly.

 "Active" connections will time out after 924.6 sec by default (tcp_retries2 = 15)

 With ENABLE=BROKEN, "idle" connections will time out after >2h, as defined by the
following tunables:

Default Value
Linux

Default Value
ExadataDescriptionTunable

7200900Time in sec a connection must be idle
before the first keepalive probe is sent.

ipv4.tcp_keepalive_time

920Number of unacknowledged keepalive probes
to send before considering the connection
dead.

ipv4.tcp_keepalive_probes

7575Interval in sec between keepalive probes.ipv4.tcp_keepalive_intvl

Without ENABLE=BROKEN, the
client will keep the TCP conn-
ection open indefinitely.

ENABLE=BROKEN
TCP Keepalive

TCP Keepalive – Idle Connections

TCP Keepalive

TCP keepalive is only triggered when a
connection is inactive and idle
(tcp_keepalive_time).

When the target host is unavailable or
unreachable, a keepalive probe will
generate no response. After an interval,
(tcp_keepalive_intvl) the sender contin-
ues to repeat the probe multiple times
(tcp_keepalive_probes).

When the connection is identified as
down, the kernel frees up connection
resources but will not notify the appli-
cation about the timeout. Instead, the
next read or write operation on the
socket will fail with ETIMEDOUT.

Client Server

tcp_keepalive_time

tcp_keepalive_intvl

tcp_keepalive_intvl
and so on …

… up to
tcp_keepalive_probes

times

Connection must be idle,
otherwise TCP keepalive
will not kick-in!

TCP Keepalive – SQL*Plus Example

nsconbrok: asking transport to enable NTOBROKEN
nttctl: entry
setsockopt(9, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0 <0.000013>

21:45:01.422004 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 2643439806, win 401, length 0
21:45:04.430003 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:07.438005 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:10.446001 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:13.454002 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:16.462002 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:19.470004 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:22.478004 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:25.486018 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:28.494002 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [.], ack 1, win 401, length 0
21:45:31.502003 IP xxx.xxx.xxx.xxx.18426 > yyy.yyy.yyy.yyy.1521: Flags [R.], seq 1, ack 1, win 401, length 0

nsdofls: sending NSPTDA packet
nspsend: entry
nspsend: plen=396, type=6
nttwr: entry
write(9, "\0\0\1\214\6$\0\0\0\0\177\...") -1 ETIMEDOUT (Connection timed out)

ERROR at line 1:
ORA-03113: end-of-file on communication channel
Process ID: 394790
Session ID: 1072 Serial number: 31992

Enable keepalive on the
TCP socket.

Send keepalive probe
packets.

Reset connection when all
keepalive probes remain un-
acknowledged.

The next write on the socket after
the connection had been reset,
fails with ETIMEDOUT.

Oracle SQL*Plus fails with an
ORA-03113 error.

TCP Keepalive Details

TCP Keepalive on a socket is enabled
with the setsockopt() system call.

The first keepalive probe begins by
transmitting a previously ACK'ed TCP
segment that has a sequence number
one less than the current sequence
number. All keepalive packets have a
length of 0.

If the target host maintains an active
connection, the sender receives an ACK
and knows the connection is alive.

When the target host is unavailable or
unreachable, the keepalive probes will
not get acknowledged, the sender will
eventually identify the connection as
down / broken and send a RST.

Settings used in this example:

- ipv4.tcp_keepalive_time = 300
- Ipv4.tcp_keepalive_probes = 10
- ipv4.tcp_keepalive_intvl = 3

Idle Connections – TCP Keepalive: Server to Client

Dead Connection Detection

Dead Connection Detection is a server-side
mechanism to identify and clean up dead TCP
connections.

It is activated via the SQLNET.EXPIRE_TIME
parameter in sqlnet.oraX

Client Server

The client can fail unexpectedly.

 "Active" connections will time out after 924.6 sec by default (tcp_retries2 = 15)

 On the server-side, TCP keepalive is always enabled by default but uses the OS default
settings with which detection of dead connections may take a long time!

 With SQLNET.EXPIRE_TIME (in minutes), the "idle" time after which connections are
checked with keepalive probes can be configured. The number of probes and interval time
between the probes is hardcoded (10 probes, 6 seconds interval).

 If the keepalive probes remain unacknowledged, the server process will terminate.

Without Dead Connection
Detection, the server will
use TCP keepalive with OS
defaults!

Dead Connection
Detection
TCP Keepalive

EXPIRE_TIME

Idle Connections – TCP Keepalive: Server to Client

execute query

EXPIRE_TIME

return result

client crashes X Blocking read()
on socket

Keepalive interval

1st keepalive probe

N-th keepalive probe

Keepalive interval

Last keepalive probe

TCP RST
X

X

X

Blocking read() on socket
returns with ETIMEDOUT

SIGALRM Signal handler

EXPIRE_TIME

EXPIRE_TIME

Blocking read() on
socket (restarted)

Process terminates

SIGALRM Signal handler

execute long query

EXPIRE_TIME
Execute long
running query

Keepalive interval

1st keepalive probe

N-th keepalive probe

Keepalive interval

Last keepalive probe

TCP RST

X

X

X
SIGALRM Signal handler

EXPIRE_TIME

EXPIRE_TIME

SIGALRM Signal handler

client crashes X

Server
OS

FG
Process

FG
Process

Continue executing
long running query

SIGALRM Signal handler
(finds connection terminated)

Process terminates

Case 1: Socket idle + Session Idle Case 2: Socket idle but Session Active

Continue executing
long running query

The FG is processing the query and
not reading on the socket, there-fore
not aware that the connection has
been closed.

Keepalive interval

Server
OS

Dead Connection Detection – Example (1/3)

Dead Connection Detection Details

In versions 12c+, Oracle uses the TCP
keepalive mechanism on the OS and sets
the following socket options (on Linux):

TCP_KEEPIDLE = SQLNET.EXPIRE_TIME
TCP_KEEPINTVL = 6 (hard coded value)
TCP_KEEPCNT = 10 (hard coded value)

In versions < 12, Oracle used a mecha-nism
based on SQL*Net probe packets. This pre-
12c mechanism can be enabled by setting
the following parameter in the server-side
sqlnet.ora:

USE_NS_PROBES_FOR_DCD=TRUE

nttctl: entry
setsockopt(14, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0

nttctl: entry
setsockopt(14, SOL_TCP, TCP_KEEPIDLE, [600], 4) = 0 <0.000008>
setsockopt(14, SOL_TCP, TCP_KEEPINTVL, [6], 4) = 0 <0.000007>
setsockopt(14, SOL_TCP, TCP_KEEPCNT, [10], 4) = 0 <0.000007>
nsconbrok: OS keep-alive options tuned

Enable TCP keepalive on
the TCP socket.

IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1301082556, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [.], ack 1, win 668, length 0
IP yyy.yyy.yyy.yyy.1521 > xxx.xxx.xxx.xxx.41262: Flags [R.], seq 1, ack 1, win 668, length 0

The server sends 10 TCP
keepalive probes

Reset connection when all
keepalive probes remain un-
acknowledged.

Dead Connection Detection – Example (2/3)

Dead Connection Detection Details

When the socket and the session both are idle,
that is, when the session is waiting for input from
the client, the read() on the socket blocks until it
gets input from the client or until it hits an error
(which is the case when the OS closes the
underlying socket after all TCP keepalive probes
have been unacknow-ledged).

Note that the signal handler still periodically runs
(interval defined by SQLNET.EXPIRE_TIME) and
checks the stocket's status with poll(). However,
chances that the signal handler will detect the
broken connection are low (it only detects the
broken connection if the OS closes it before the
call to poll()).

read(14, 0x7fffeff51ed6, 8208) = ? ERESTARTSYS (To be restarted if SA_RESTART is set) <60.000006>

--- SIGALRM {si_signo=SIGALRM, si_code=SI_KERNEL} ---
poll([{fd=14, events=POLLIN|POLLRDNORM}], 1, 0) = 0 (Timeout) <0.000008>
rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0 <0.000019>
setitimer(ITIMER_REAL, {it_interval={tv_sec=0, tv_usec=0}, it_value={tv_sec=60, tv_usec=0}}, NULL) = 0
rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0 <0.000006>
rt_sigreturn({mask=[]}) = 0 <0.000006>

read(14, 0x7fffeff51ed6, 8208) = -1 ETIMEDOUT (Connection timed out) <6.800357>

Case 1: Socket idle + Session Idle

The signal handler interrupts the
read() call on the socket and restarts
it after execution (s. below)

The signal handler executes and
arms a new alarm (using
EXPIRE_TIME; 1 min in this
example)

The read() on the socket resumes
and receives a timeout when the
OS has closed the connection.

nserror: nsres: id=0, op=68, ns=12535, ns2=12560; nt[0]=505, nt[1]=110

The server process aborts with
TNS-12535 and TNS-12560 errors

Dead Connection Detection – Example (3/3)

Dead Connection Detection Details

When the socket is idle but the session (or
process rather) is executing user activity,
like running a query for instance, the signal
handler periodically interrupts execution
and checks if the connection is still alive.

It does this using poll() and recvfrom()
system calls. The return codes and flags set
by these system calls will inform the server
about the status of the connection. If the
connection is found to be dead, the server
process will terminate.

Note: In this case, the server process is not
reading on a socket and waiting for user
input. Therefore, the only way for the
server to learn that the connection is dead,
is via the signal handler.

--- SIGALRM {si_signo=SIGALRM, si_code=SI_KERNEL} ---

poll([{fd=14, events=POLLIN|POLLRDNORM}], 1, 0) = 1 ([{fd=14, revents=POLLIN|POLLRDNORM|POLLERR|POLLHUP}])

recvfrom(14, 0x7ffffffe5920, 1, MSG_PEEK, NULL, NULL) = -1 ETIMEDOUT (Connection timed out) <0.000007>

rt_sigprocmask(SIG_BLOCK, [ALRM], NULL, 8) = 0 <0.000006>
setitimer(ITIMER_REAL, {it_interval={tv_sec=0, tv_usec=0}, it_value={tv_sec=60, tv_usec=0}}, NULL) = 0
rt_sigprocmask(SIG_UNBLOCK, [ALRM], NULL, 8) = 0 <0.000006>
rt_sigreturn({mask=[]}) = 0 <0.000007>

Case 2: Socket idle + Session Active

The signal handler interrupts
whatever the FG process has been
executing (running a query, for
instance).

The poll() returns with the "error"
and "hangup" flags set, therefore
the server now knows that the
connection to the client has been
closed.

The signal handler calls recvfrom() with the MSG_PEEK flags.
This doesn't return any data but results in a timeout error.
This "verifies" the broken connection.

The signal handler arms the alarm
again. This would not be
necessary though.

nserror: nsres: id=0, op=68, ns=12535, ns2=12560; nt[0]=505, nt[1]=110

The server process aborts with
TNS-12535 and TNS-12560 errors

Established Connections – Firewalls

Firewalls

When a firewall between client and server
closes an established connection, the
following will happen:

Active connections: the regular TCP
retransmission mechanism will kick-in until
the RTO expires (after 924.6 sec on Linux by
default).

Idle connection: the TCP keepalive
mechanism will identify dead con-nections
and clean them up eventually.

On the server-side, Oracle always enables
TCP keepalive implicitly and allows some
fine tuning via Dead Connection Det-ection
/ SQLNET.EXPIRE_TIME.

On the client side, TCP keepalive is only
enabled when ENABLE=BROKEN is used.
Without that, dead client connections will
linger around forever!

X
Client Server

A firewall (or other network device) can close
connections unexpectedly.

Client

Active Connections:
 Retransmits with timeout after 924.6 sec by

default (tcp_retries2 = 15)

Idle Connections
 With ENABLE=BROKEN: timeout after ~2h
 Without ENABLE=BROKEN: dead

connections will linger indefinitely

Server

Active Connections:
 Retransmits with timeout after 924.6 sec by

default (tcp_retries2 = 15)

Idle Connections
 With DCD: timeout after

SQLNET.EXPIRE_TIME + 60 sec
(10 probes every 6 sec)

 Without DCD: dead connections will linger
until the OS default keepalive timeouts kick
in!)

Established Connections – Send & Receive Timeouts

Send & Receive Timeouts

The send and receive timeouts will limit the
time for the database server and client to
complete send and receive operations.

The timeouts can be set in the server-
and client-side sqlnet.ora via the
RECV_TIMEOUT and SEND_TIMEOUT
parameters.

Be careful with these settings, you probably
don't need them often in practice!

Client
DB Server

write() read()

read() write()

SQLNET.SEND_TIMEOUT

This sets the SO_SNDTIMEO option on the
socket.

If data has been received on a socket and a
subsequent write blocks for the specified period
of time, it will fail with an error (EAGAIN).

SQLNET.RECV_TIMEOUT

This sets the SO_RCVTIMEO option on
the socket.

If data has been sent on a socket and a
subsequent read blocks for the speci-fied
period of time, it will fail with an error
(EAGAIN).

Established Connections – Receive Timeout: Happy Path

Client
DB Server

Oracle FG Process

Request Request

SQLNET.RECV_TIMEOUT=10

X
Timeout=10 sec

ERROR at line 1:
ORA-12609: TNS: Receive timeout occurred

setsockopt(9, SOL_SOCKET, SO_RCVTIMEO, "\n\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 16) = 0 <0.000012>

read(9, 0x92e866, 8208) = -1 EAGAIN (Resource temporarily unavailable) <10.003321>

nserror: nsres: id=0, op=68, ns=12535, ns2=12609; nt[0]=0, nt"..., 145) = 145

nsdo: sending ATTN
sendto(9, "!", 1, MSG_OOB, NULL, 0) = 1 <0.000025>
nsdo: 1 urgent byte to transport

nioqrs: state = interrupted (1)
nioqrs: nioqrs: sending reset marker...
nioqsm: entry\n
nioqsm: Sending reset packet (2)...

read(9, "\0\0\0\374\6$..., 8208) = 252

Cancel: Out of Band Break (OOB)

The client and server sessions
will remain open and the client
can continue sending new
requests to the server.

Cancel Confirmation

Established Connections – Receive Timeout: Unhappy Path

Client
DB Server

Oracle FG Process

Request Request

SQLNET.RECV_TIMEOUT=10

X
Timeout=10 sec

ERROR at line 1:
ORA-12609: TNS: Receive timeout occurred

Out of Band Break (OOB)
X

setsockopt(9, SOL_SOCKET, SO_RCVTIMEO, "\n\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 16) = 0 <0.000012>

read(9, 0x92e866, 8208) = -1 EAGAIN (Resource temporarily unavailable) <10.003321>

nserror: nsres: id=0, op=68, ns=12535, ns2=12609; nt[0]=0, nt"..., 145) = 145

nsdo: sending ATTN
sendto(9, "!", 1, MSG_OOB, NULL, 0) = 1 <0.000025>
nsdo: 1 urgent byte to transport

nioqrs: state = interrupted (1)
nioqrs: nioqrs: sending reset marker...
nioqsm: entry\n
nioqsm: Sending reset packet (2)...

read(9, 0x16446c6, 8208) = -1 EAGAIN (Resource temporarily unavailable) <10.229542>

The cancel OOB packet doesn't
reach the server. The server
continues processing the
request.

The client doesn't get the cancellation
confirmed, waits for another RECV_
TIMEOUT interval and then aborts. This
means it'll take 2 x RECV_TIMEOUT for
the client to fail.

read() = EAGAIN
Abort!

Appendix D: Out Of Band Breaks (OOB)

Out of Band Breaks (OOB)

#0 0x00000000042cd6b0 in sslsshandler ()
#1 <signal handler called>
#2 0x0000000012c921c0 in smbget ()
#3 0x0000000012c8ee7c in sorgetqbf ()
#4 0x0000000012dfa9ce in qersoFetchSimple ()
#5 0x0000000012df6d12 in qersoFetch ()
#6 0x000000000409ab98 in qerjoCartesianFetch ()
#7 0x0000000012e01140 in qergsFetch ()
#8 0x0000000012ba1f39 in opifch2 ()
#9 0x0000000012c1c94b in kpoal8 ()
#10 0x0000000012ba8f52 in opiodr ()
#11 0x0000000012eda603 in ttcpip ()
#12 0x0000000002894d8c in opitsk ()
#13 0x0000000002899718 in opiino ()
#14 0x0000000012ba8f52 in opiodr ()
#15 0x0000000002890b06 in opidrv ()
#16 0x000000000344dec5 in sou2o ()
#17 0x0000000000dce1a6 in opimai_real ()
#18 0x00000000034598e1 in ssthrdmain ()
#19 0x0000000000dcdfd0 in main ()

Client DB Server

CTRL+C

Execution Flow

Oracle FG Process

Run Query

Deliver SIGURG Signal

SELECT … FROM … Oracle Signal Handler

return

sslsshandler

sendto(9, "!", 1, MSG_OOB, NULL, 0) = 1

The client will send a
1-byte TCP packet
with a payload of "!"
and the URG flag set.

When the SIGURG signal is
delivered, the process is
interrupted and execution re-
directed to the Oracle signal
handler function sslsshandler.

OOB is controlled by the DISABLE_OOB parameter
in sqlnet.ora, which defaults to FALSE (OOB is enabled).

Note: This is a client-side only parameter! (setting it on
the server will have no effect).

Auto OOB (new in 19c)
Oracle 19c Auto OOB

With Auto OOB in Oracle 19c, the server
will check if OOB is supported at con-nect
time.

Technically, the Auto OOB support check
consists of Oracle waiting on the POLLPRI
event on the connection's socket. The
Oracle server uses poll() with infinite
timeout for that purpose.

If the server doesn't get a POLLPRI ev-ent
on the connection's socket within the
time limit defined by INBOUND_
CONNECT_TIMEOUT, the timer alarm will
fire and the Oracle server process will fail
with ORA-609 and TNS-12637 errors. This
can occur if firewalls drop or clear TCP
packets with the URG flag!

Auto OOB is controlled by the sqlnet.ora
parameter DISABLE_OOB_AUTO, which
defaults to FALSE (Auto OOB enabled).
Note that this is a server-side only
parameter (setting it on the client will
have no effect).

Client DB Server

poll([{fd=14, events=POLLIN|POLLPRI|POLLRDNORM}], 1, -1)

nsevdcall: Sending OOB and ATTN
sendto(9, "!", 1, MSG_OOB, NULL, 0)

SQL*Net Trace Server (OOB ok)

nsaccept: Checking OOB Support
sntpoltsts: fd 14 need 43 readiness event, wait time -1
sntpoltsts: fd 14 has 4 readiness ev
sntpoltsts: exit
nsaccept: OOB is Reaching Perfectly

SQL*Net Trace Server (OOB failed)

nsaccept: Checking OOB Support
sntpoltsts: fd 14 need 43 readiness event, wait time -1
sntpoltsts: fd 14 has 2 readiness ev
sntpoltsts: exit
nttctl: entry
nsaccept: OOB is getting dropped

Server waiting for
POLLPRI indefinitely.

Client sending OOB
packet.

Notes:

 DISABLE_OOB is a client- and
DISABLE_OOB_AUTO a server-
side parameter!

 Changing DISABLE_OOB_AUTO will
NOT require a server restart.

Appendix E:
Fast Application Notification (FAN)

Fast Application Notification – ONS Auto Configuration

ONS Auto Configuration ("Auto-ONS")

In Oracle 12c and higher, FAN is auto-
configured. This means that when the
client starts, it queries the databases for
the ONS end-points automatically.

The automatic configuration spans data
centers and the client auto-matically
receives an ONS configuration from each
database listed in the connection URL. No
configuration of ONS is required at the
client other than enabling FAN.

The client will create multiple ONS Node
Groups automatically to receive FAN
events from primary and standby clusters
.

If network connections to ONS (port
6200) are slow or blocked by a firewall,
the client will hang for 10 sec!

Oracle Whitepaper: Fast Application Notification (FAN)

Client DB Cluster

SCAN

ONS Node Groups

Primary
oracle.ons.nodes.001=node1a:6200,node1b:6200,node1c:6200

Standby
oracle.ons.nodes.002=node2a:6200,node2b:6200,node2c:6200

With Auto-ONS, the ONS
Node Groups are created
automatically based on the
SCAN!

In versions <12c, these ONS
Node Groups had to be
configured and maintained.

Fast Application Notification – Prerequisites

2. Check Configuration
srvctl config service -d TESTDB19_011 -s my_test_rw

Service name: MY_TEST_RW
Server pool:
Cardinality: 1
Service role: PRIMARY
Management policy: AUTOMATIC
DTP transaction: false
AQ HA notifications: true
Global: false
Commit Outcome: false
[…]
Preferred instances: TESTDB19_0113
Available instances: TESTDB19_0111,TESTDB19_0112,TESTDB19_0114
CSS critical: no
Service uses Java: false

srvctl modify service -d TESTDB19_011 -s my_test_rw -notification true

1. Enable FAN Notifications (only for OCI based Clients)

For OCI based clients, FAN
Notifications must be explicitly
enabled! For other clients (JDBC),
FAN is automatically configured and
enabled in versions 12c and above!

Confusingly, this is still called "AQ HA
notifications" in 19c because older
FAN implementations used AQ as an
event transport mecha-nism rather
than ONS. Just ignore the "AQ" part
in this name!

Fast Application Notification – fanWatcher Tool

2. fanWatcher Installation

$ORACLE_HOME/jdk/bin/javac \

-cp $ORACLE_HOME/jdbc/lib/ojdbc8.jar:$ORACLE_HOME/opmn/lib/ons.jar \

fanWatcher.java

3. fanWatcher Basic Usage

$ORACLE_HOME/jdk/bin/java \

-cp $ORACLE_HOME/jdbc/lib/ojdbc8.jar:$ORACLE_HOME/opmn/lib/ons.jar:.\

fanWatcher <config_type>

autoons:
Automatically configure ONS based on the TNS descriptor (ONS Auto-Config);
this option requires the environment variables user, password and url to be
set.

nodes="...":
Explicitly configure an ONS node list.

Download fanWatcher from this link (rename file to fanWatcher.java).

1. fanWatcher Download

You must include ojdbcN.jar,
ons.jar and the current
directory of fanWatcher (that
is, include '.') in the classpath.

FAN & TNS Descriptors

(DESCRIPTION=
(ADDRESS=(PROTOCOL=TCP)(HOST=my-scan01.mydomain.net)(PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=my-scan02.mydomain.net)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=MY_TEST_RW.WORLD))

)

No
ADDRESS_LIST

(DESCRIPTION=
(ADDRESS_LIST=

(ADDRESS=(PROTOCOL=TCP)(HOST=my-scan01.mydomain.net)(PORT=1521)))
(ADDRESS_LIST=

(ADDRESS=(PROTOCOL=TCP)(HOST=my-scan02.mydomain.net)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=MY_TEST_RW.WORLD))

)

ADRESS_LIST

EZConnect
my-scan01.mydomain.net:1521,
My-scan02.mydomain.net:1521/
MY_TEST_RW.WORLD

Auto-ONS configuration=maxconnections.0001=0003
nodes.0001=MY-SCAN01.MDYDOMAN.NET:6200
maxconnections.0002=0003
nodes.0002=MY-SCAN02.MYDOMAIN.NET:6200
Opening FAN Subscriber Window ...

Auto-ONS configuration=maxconnections.0001=0003
nodes.0001=MY-SCAN01.MYDOMAIN.NET:6200
maxconnections.0002=0003
nodes.0002=MY-SCAN02.MYDOMAIN.NET:6200
Opening FAN Subscriber Window ...

Subscribing to events of type:
Auto-ONS configuration=maxconnections.0001=0003
nodes.0001=MY-SCAN01.MYDOMAIN.NET:6200,MY-
SCAN02.MYDOMAIN.NET:6200
Opening FAN Subscriber Window ...

EZConnect does not support
ADDRESS_LISTs. As a conseq-
uence, auto-ons does not
create a node group for the
standby with EZConnect!

ONS Connections – TCP Timeouts Example Trace

ONS Connections

The Oracle client spawns new threads for
handling the ONS connections to the
primary and the standby (one thread per
SCAN IP).

The Oracle client's main thread will block on
a condition variable for 10 sec with
pthread_cond_timedwait().

If the call to pthread_cond_timedwait()
times out, the client proceeds without
opening ONS connections!

./ora_connect.bt --unsafe <client_pid>

Tracing connect behavior (pid 334310). Hit ^C to stop.

[Initial DNS & SCAN requests not shown…]

23:21:01 334310/334310: connect: fd=11, nnn.nnn.nnn.nnn:1521
23:21:01 334310/334310: poll: fd=11, event=POLLOUT, timeout=4000
23:21:01 334310/334310: poll: fd=11, event=POLLIN, timeout=6000
23:21:01 334310/334310: poll: fd=11, event=POLLOUT, timeout=5000
23:21:01 334310/334310: poll: fd=11, event=POLLIN, timeout=5000
23:21:01 334310/334310: sendto: fd=11 (OOB check)
23:21:01 334310/334310: poll: fd=11, event=POLLIN, timeout=5000

23:21:01 334310/334310: connect: fd=13, 1.2.3.4:53
23:21:01 334310/334310: poll: fd=13, event=POLLOUT, timeout=0
23:21:01 334310/334310: sendmmsg: fd=13, vlen=2, qname=my-scan01.mydomain.net
23:21:01 334310/334310: poll: fd=13, event=POLLIN, timeout=10000
23:21:01 334310/334310: poll: fd=13, event=POLLIN, timeout=9997

23:21:01 334310/334310: connect: fd=13, 4.3.2.1:53
23:21:01 334310/334310: poll: fd=13, event=POLLOUT, timeout=0
23:21:01 334310/334310: sendmmsg: fd=13, vlen=2, qname=my-scan02.mydomain.net
23:21:01 334310/334310: poll: fd=13, event=POLLIN, timeout=10000
23:21:01 334310/334310: poll: fd=13, event=POLLIN, timeout=9997

23:21:01 334310/338778: connect: fd=14, xxx.xxx.xxx.36:6200
23:21:01 334310/338779: connect: fd=15, xxx.xxx.xxx.37:6200
23:21:01 334310/338780: connect: fd=16, xxx.xxx.xxx.38:6200
23:21:01 334310/338782: connect: fd=13, yyy.yyy.yyy.132:6200
23:21:01 334310/338781: connect: fd=17, yyy.yyy.yyy.134:6200
23:21:01 334310/139395: connect: fd=15, yyy.yyy.yyy.133:6200

23:21:01 334310/334310: ons_cond_timedwait_sec: entry now=1661250061,
sec=1661250071, nsec=5000000

23:21:01 334310/334310: ons_cond_timedwait_sec: leave now=1661250061

DNS
Lookup
SCAN1

ONS
Requests

Node Lsnr
Request

DNS
Lookup
SCAN2

Guess what, with ONS we'll get
additional DNS requests… but we're
done with DNS for now! :-)

The connections to ONS port 6200 are
opened from newly spawned threads (s.
pid and tid columns). The client spawns
one thread per SCAN IP.

The ONS connection timeout is
implemented via threading mechanisms
(ons_cond_timedwait_sec() is a wrapper
around pthread_cond_timedwait())

Appendix F: SQL*Net Tracing

SQL*Net Tracing – Trace Settings

DIAG_ADR_ENABLED = OFF
TRACE_DIRECTORY_CLIENT = /path
TRACE_FILE_CLIENT = client
TRACE_LEVEL_CLIENT = SUPPORT
TRACE_TIMESTAMP_CLIENT = ON
TRACE_UNIQUE_CLIENT = ON

DIAG_ADR_ENABLED_LISTENER_name = OFF
TRACE_DIRECTORY_LISTENER_name = /path
TRACE_FILE_LISTENER_name = lsnr
TRACE_LEVEL_LISTENER_name = SUPPORT

DIAG_ADR_ENABLED = OFF
TRACE_DIRECTORY_SERVER = /path
TRACE_FILE_SERVER = server
TRACE_LEVEL_SERVER = SUPPORT
TRACE_TIMESTAMP_SERVER = ON
TRACE_UNIQUE_SERVER = ON

Listener Trace (listener.ora)Client Trace (sqlnet.ora) Server Trace (sqlnet.ora)

SQL*Net Tracing – Redirect & Isolate Traffic to Debug Listener

LISTENER_DEBUG =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)

(HOST = myhostdb03-v.mydomain.net)
(PORT = 11521)

)
)

SID_LIST_LISTENER_DEBUG =
(SID_LIST =
(SID_DESC =
(GLOBAL_DBNAME = MY_TEST_RW.WORLD)
(ORACLE_HOME = /u01/app/oracle/product/19.0.0.0/dbhome_1920)
(SID_NAME = TCTEST19_0113)
(ENVS="TNS_ADMIN=/path/to/admin_debug")

)
)

DIAG_ADR_ENABLED_LISTENER_DEBUG = OFF
TRACE_DIRECTORY_LISTENER_DEBUG = /path
TRACE_FILE_LISTENER_DEBUG = lsnr
TRACE_LEVEL_LISTENER_DEBUG = SUPPORT

Clients

Regular Listener Port 1521

Debug
Client(s)

NAT Port Forwarding
Port 1521 -> 11521

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -t nat -A PREROUTING -p tcp -s <source_ip> \
-d <destination_ip> --dport 1521 -j DNAT \
--to-destination <destination_ip>:11521

iptables -A FORWARD -m state -p tcp -s <source_ip> \
-d <destination_ip> --dport 11521 \
--state NEW,ESTABLISHED,RELATED \
-j ACCEPT

Debug Listener Port 11521

listener.oraSqlnet.ora

DIAG_ADR_ENABLED = OFF
TRACE_DIRECTORY_SERVER = /path
TRACE_FILE_SERVER = server
TRACE_LEVEL_SERVER = SUPPORT
TRACE_TIMESTAMP_SERVER = ON
TRACE_UNIQUE_SERVER = ON

Modified from source: Beat Ramseier, Are you fishing or catching? – Server-side SQL*Net tracing for specific clients, 2017-10-15

Appendix G – Connect Timeouts
(Static Diagrams)

Connect Timeouts – The Dance Between Client and Server

Node
Lsnr

Child1
Child2
(FG)

NSPTCN

SCAN
Lsnr

NSPTCN

NSPTRD

NSPTCN

NSPTRS

NSPTAC

19c+: Auto OOB Check (TCP URG)

NSPTDA: Authentication + Encryption Negotiation

(TNS Connection open. Configure Auto-ONS if enabled.)

CONNECT_TIMEOUT

CONNECT_TIMEOUT

fork()

(terminate)

Server
OS

TRANSPORT_
CONNECT_TIMEOUT

connect()

accept()

epoll_wait()

epoll_wait()

epoll_wait()

accept()

epoll_wait()

INBOUND_CONNECT_
TIMEOUT_listener_SCANn

INBOUND_CONNECT_
TIMEOUT_listener_name

execve()

nsbequeath: NSE=12586 setitimer()

SQLNET.INBOUND_
CONNECT_TIMEOUT

This timeout is
delivered via a
signal (SIGALRM).fork()

NSPTDA

(wakeup)

(wakeup)

The server will wait in
poll() for a POLLPRI
event with infinite
timeout (Auto OOB).

ORA-12170

ORA-12170

ORA-12170

ORA-12170

ORA-609

TRANSPORT_
CONNECT_TIMEOUT

connect()

cond wait timeout = 10 sec
(hard coded in

libclntsh.so.19.1
kpueONSRegister)

1-3

Connect Timeouts – The Dance Between Client and Server (Auto-ONS)

Thread
1-3

Client
OS

pthread_create()

ONS
Prmry

ONS
Stdby

1-3
Thread

4-6

spawn thread1

spawn thread2

spawn thread3

spawn thread4

spawn thread5

spawn thread6

connect()

connect()

connect()

connect()

connect()

connect()

Threads 1-3 block in
connect()
[Blocking Socket]

Threads 4-6 block in
connect()
[Blocking Socket]

pthread_cond_wait()

signal cond
signal cond

The main thread can
proceed when the
condition is met or the
timeout has expired.

At this point the
database session is
now open.

10 sec

If ONS port 6200 is
blocked by a fire-
wall, connections
have to wait for 10
sec here!

ONS Registration

